Grey system theory is a multidisciplinary scientific approach, which deals with systems that have partially unknown information (small sample and uncertain information). Grey modeling as an important component of such theory gives successful results with limited amount of data. Grey Models are divided into two types; univariate and multivariate grey models. The univariate grey model with one order derivative equation GM (1,1) is the base stone of the theory, it is considered the time series prediction model but it doesn’t take the relative factors in account. The traditional multivariate grey models GM(1,M) takes those factor in account but it has a complex structure and some defects in " modeling mechanism", "parameter estimation "and "model structure", So that traditional GM(1,M) submitted to many trials of optimizations to getting rid this defects. This research shows the characteristics of the traditional GM(1,M), the problems it suffer from, the method of getting rid of such problems and presents two optimized multivariable grey model of one order derivative equation. the first one is called the Optimized Grey Model abbreviated as OGM(1, M) by adding the linear correction term h1(M-1)and the grey action quantity term (h2) to the traditional model GM(1,M) the latter is called Optimized Background value Grey Model OBGM(1,M) by optimizing the Background value of the last model OGM(1,M). We use two A realistic data represents the water consumption in Baghdad at the period (2016-2022) to compare the two optimized models with the traditional represents the water consumption in Baghdad at the period (2016-2022)). we use the mean absolute percentage error (MAPE) and the determination coefficient R2. To compare the two optimized model with traditional one. The results show that the two optimized have less values than the those of the traditional model GM(I,M), and that verify the correctness of defects analysis of GM(1,M).
The present paper agrees with estimation of scale parameter θ of the Inverted Gamma (IG) Distribution when the shape parameter α is known (α=1), bypreliminarytestsinglestage shrinkage estimators using suitable shrinkage weight factor and region. The expressions for the Bias, Mean Squared Error [MSE] for the proposed estimators are derived. Comparisons between the considered estimator with the usual estimator (MLE) and with the existing estimator are performed .The results are presented in attached tables.
This paper is concerned with pre-test single and double stage shrunken estimators for the mean (?) of normal distribution when a prior estimate (?0) of the actule value (?) is available, using specifying shrinkage weight factors ?(?) as well as pre-test region (R). Expressions for the Bias [B(?)], mean squared error [MSE(?)], Efficiency [EFF(?)] and Expected sample size [E(n/?)] of proposed estimators are derived. Numerical results and conclusions are drawn about selection different constants included in these expressions. Comparisons between suggested estimators, with respect to classical estimators in the sense of Bias and Relative Efficiency, are given. Furthermore, comparisons with the earlier existing works are drawn.
This study aimed at some of the criteria used to determine the form of the river basins, and exposed the need to modify some of its limitations. In which, the generalization of the elongation and roundness ratio coefficient criterion was modified, which was set in a range between (0-1). This range goes beyond determining the form of the basin, which gives it an elongated or rounded feature, and the ratio has been modified by making it more detailed and accurate in giving the basin a specific form, not only a general characteristic. So, we reached a standard for each of the basins' forms regarding the results of the elongation and circularity ratios. Thus, circular is (1-0.8), and square is (between 0.8-0.6), the blade or oval form is (0.6-0
... Show MoreAnalysis the economic and financial phenomena and other requires to build the appropriate model, which represents the causal relations between factors. The operation building of the model depends on Imaging conditions and factors surrounding an in mathematical formula and the Researchers target to build that formula appropriately. Classical linear regression models are an important statistical tool, but used in a limited way, where is assumed that the relationship between the variables illustrations and response variables identifiable. To expand the representation of relationships between variables that represent the phenomenon under discussion we used Varying Coefficient Models
... Show MoreThe performa of evaluation process is a process that should be carried out by all industrial management in order to stand on aspects of development or underdevelopment of the various departments and activities in its industrial project for the purpose of identifying obstacles and find out the causes and then avoid them quickly. And intended to rectify the performance evaluation of the activities of industrial project or economic union by measuring the results achieved within a specific operational process and compare it to what is already targeted, and often the time for comparison of one year.
The process of performance evaluation depends upon several criteria and indicators within the
... Show MoreThe objective of the research , is to shed light on the most important treatment of the problem of missing values of time series data and its influence in simple linear regression. This research deals with the effect of the missing values in independent variable only. This was carried out by proposing missing value from time series data which is complete originally and testing the influence of the missing value on simple regression analysis of data of an experiment related with the effect of the quantity of consumed ration on broilers weight for 15 weeks. The results showed that the missing value had not a significant effect as the estimated model after missing value was consistent and significant statistically. The results also
... Show MoreAbstract\
The value chain analysis is main tools to achieve effective and efficient cost management; it requires a depth and comprehensive understanding for all internal and external activities associated with creating value. Supply chain as apart of value chain, that means managing it in active and efficient can achieve great results when adopting a comprehensive and integrated performance for these two chains activities. The research aims to identify possible ways to integrate the performance of value and supply chains of the sample" Kufa-cement plant" and determine the effect of this integration in enhancing customer value. The research arrival that logical and integrated analysis of value and supply chains helps
... Show MoreAbstract The study aims to clarify the value of auditing economic units and how it can be measured, which is one of the most important challenges to matching the Value Relevance of Accounting Information. The problem of the study was identified with questions that revolve around the extent to which it is possible to measure the value of auditing in Iraqi economic units and the extent to which the value of auditing affects the adequacy of accounting information. Through reviewing the studies discussing this topic, it was found that auditing can provide value through the performance of the auditor and adding value to the economic unit subject to audit. The study recommended the need to study the situational factors of auditing, whether exter
... Show MoreThe purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals
... Show MoreAbstract
Binary logistic regression model used in data classification and it is the strongest most flexible tool in study cases variable response binary when compared to linear regression. In this research, some classic methods were used to estimate parameters binary logistic regression model, included the maximum likelihood method, minimum chi-square method, weighted least squares, with bayes estimation , to choose the best method of estimation by default values to estimate parameters according two different models of general linear regression models ,and different s
... Show More