Grey system theory is a multidisciplinary scientific approach, which deals with systems that have partially unknown information (small sample and uncertain information). Grey modeling as an important component of such theory gives successful results with limited amount of data. Grey Models are divided into two types; univariate and multivariate grey models. The univariate grey model with one order derivative equation GM (1,1) is the base stone of the theory, it is considered the time series prediction model but it doesn’t take the relative factors in account. The traditional multivariate grey models GM(1,M) takes those factor in account but it has a complex structure and some defects in " modeling mechanism", "parameter estimation "and "model structure", So that traditional GM(1,M) submitted to many trials of optimizations to getting rid this defects. This research shows the characteristics of the traditional GM(1,M), the problems it suffer from, the method of getting rid of such problems and presents two optimized multivariable grey model of one order derivative equation. the first one is called the Optimized Grey Model abbreviated as OGM(1, M) by adding the linear correction term h1(M-1)and the grey action quantity term (h2) to the traditional model GM(1,M) the latter is called Optimized Background value Grey Model OBGM(1,M) by optimizing the Background value of the last model OGM(1,M). We use two A realistic data represents the water consumption in Baghdad at the period (2016-2022) to compare the two optimized models with the traditional represents the water consumption in Baghdad at the period (2016-2022)). we use the mean absolute percentage error (MAPE) and the determination coefficient R2. To compare the two optimized model with traditional one. The results show that the two optimized have less values than the those of the traditional model GM(I,M), and that verify the correctness of defects analysis of GM(1,M).
The transfer function model the basic concepts in the time series. This model is used in the case of multivariate time series. As for the design of this model, it depends on the available data in the time series and other information in the series so when the representation of the transfer function model depends on the representation of the data In this research, the transfer function has been estimated using the style nonparametric represented in two method local linear regression and cubic smoothing spline method The method of semi-parametric represented use semiparametric single index model, With four proposals, , That the goal of this research is comparing the capabilities of the above mentioned m
... Show MoreAbstract
The analysis of Least Squares: LS is often unsuccessful in the case of outliers in the studied phenomena. OLS will lose their properties and then lose the property of Beast Linear Unbiased Estimator (BLUE), because of the Outliers have a bad effect on the phenomenon. To address this problem, new statistical methods have been developed so that they are not easily affected by outliers. These methods are characterized by robustness or (resistance). The Least Trimmed Squares: LTS method was therefore a good alternative to achieving more feasible results and optimization. However, it is possible to assume weights that take into consideration the location of the outliers in the data and det
... Show MoreThe method binery logistic regression and linear discrimint function of the most important statistical methods used in the classification and prediction when the data of the kind of binery (0,1) you can not use the normal regression therefore resort to binary logistic regression and linear discriminant function in the case of two group in the case of a Multicollinearity problem between the data (the data containing high correlation) It became not possible to use binary logistic regression and linear discriminant function, to solve this problem, we resort to Partial least square regression.
In this, search the comparison between binary lo
... Show MoreEstimations of average crash density as a function of traffic elements and characteristics can be used for making good decisions relating to planning, designing, operating, and maintaining roadway networks. This study describes the relationships between total, collision, turnover, and runover accident densities with factors such as hourly traffic flow and average spot speed on multilane rural highways in Iraq. The study is based on data collected from two sources: police stations and traffic surveys. Three highways are selected in Wassit governorate as a case study to cover the studied locations of the accidents. Three highways are selected in Wassit governorate as a case study to cover the studied locations of the accidents. The se
... Show MoreEstimations of average crash density as a function of traffic elements and characteristics can be used for making good decisions relating to planning, designing, operating, and maintaining roadway networks. This study describes the relationships between total, collision, turnover, and runover accident densities with factors such as hourly traffic flow and average spot speed on multilane rural highways in Iraq. The study is based on data collected from two sources: police stations and traffic surveys. Three highways are selected in Wassit governorate as a case study to cover the studied locations of the accidents. Three highways are selected in Wassit governorate as a case study to cover the studied locations of the accidents. The selection
... Show MoreConditional logistic regression is often used to study the relationship between event outcomes and specific prognostic factors in order to application of logistic regression and utilizing its predictive capabilities into environmental studies. This research seeks to demonstrate a novel approach of implementing conditional logistic regression in environmental research through inference methods predicated on longitudinal data. Thus, statistical analysis of longitudinal data requires methods that can properly take into account the interdependence within-subjects for the response measurements. If this correlation ignored then inferences such as statistical tests and confidence intervals can be invalid largely.
Ferritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m
... Show MoreThe logistic regression model regarded as the important regression Models ,where of the most interesting subjects in recent studies due to taking character more advanced in the process of statistical analysis .
The ordinary estimating methods is failed in dealing with data that consist of the presence of outlier values and hence on the absence of such that have undesirable effect on the result. &nbs
... Show MoreIn this research, the focus was placed on estimating the parameters of the Hypoexponential distribution function using the maximum likelihood method and genetic algorithm. More than one standard, including MSE, has been adopted for comparison by Using the simulation method
Transmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's p
... Show More