Transportation network could be considered as a function of the developmental level of the Iraq, that it is representing the sensitive nerve of the economic activity and the corner stone for the implementation of development plans and developing the spatial structure.
The main theme of this search is to show the characteristics of the regional transportation network in Iraq and to determine the most important effective spatial characteristics and the dimension of that effect negatively or positively. Further this search tries to draw an imagination for the connection between network as a spatial phenomenon and the surrounded natural and human variables within the spatial structure. This search aiming also to determine the nat
Forecasting has become common process and reality. Since man has found multiple forms of simple predictive predictions, fruitful predictive results have emerged, such as weather forecasting or trading on stock exchange. The research was organized by defining the problem, which was manifested by the question:
(What is the prediction in global logo design methods?)
The aim of the research: (revealing design prediction in the methods of global logos). The theoretical framework was: (the concept of prediction in the design of global logos), (methods of global logos), (types of prediction) and then were attached to indicators, results and conclusions, including:
- The color value of international logos came with human needs: a
A large number of researchers had attempted to identify the pattern of the functional relationship between fertility from a side and economic and social characteristics of the population from another, with the strength of effect of each. So, this research aims to monitor and analyze changes in the level of fertility temporally and spatially in recent decades, in addition to estimating fertility levels in Iraq for the period (1977-2011) and then make forecasting to the level of fertility in Iraq at the national level (except for the Kurdistan region), and for the period of (2012-2031). To achieve this goal has been the use of the Lee-Carter model to estimate fertility rates and predictable as well. As this is the form often has been familiar
... Show More<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope
... Show MoreIn spite of economic importance of sugar cane and sugar beet as they described as industrial crops they still face decreasing rates of production and productivity in Iraq , and their production was not able to satisfy the local industrial demands for sugar . Thus this study aimed at studying and analyzing, production and productivity of sugar cane and sugar beet in Iraq and this has been done by using non serial data that can be obtained from official offices in Iraq . The area and production of sugar cane in Iraq recorded positive annual growth rates during 1970- 1978 which were 6% and 5% consequently , while the productivity of sugar cane recorded at the same duration of time negative annual growth rate which was 1% , while they recorded
... Show MoreFace recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreAerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A
... Show More