The objective of drilling parameters optimization in Majnoon oilfield is to arrive for a methodology that considers the past drilling data for five directional wells at 35 degree of inclination as a baseline for new wells to be drilled. Also, to predicts drilling performance by selecting the applied drilling parameters generated the highest rate of penetration (ROP) at each section. The focal point of the optimization process is to reduce drilling time and associated cost per each well. The results of this study show that the maximum ROP could not be achieved without sufficient flow rate to cool and clean the bit in clay intervals (36" and 24") hole sections. Although the influence of combination of Weight on Bit (WOB), Round per minute (RPM), and hydraulic horsepower on the bit in (16", 12 1/4" and 8 1/2") hole sections is a key to reduce drilling time, therefore, the drilling parameters produced the fastest ROP per each section was considered as optimum parameters likely to apply for the future wells.
This paper presents a numerical analysis of the piled-raft foundation (PRF) based on the actual behavior of supporting piles. The raft was modeled as a thin plate, while the piles were modeled as springs in different ways. This research also aims to propose an analytical model of piles based on actual behavior at fieldwork. The results proved that the structural behavior of raft member can be improved through utilizing the actual behavior of supporting piles. When the piles were modeled as non-linear stiffness springs, settlements and bending stresses of raft foundation were reduce marginally as compared with those obtained from piles with linear stiffness springs.
Water contamination is a pressing global concern, especially regarding the presence of nitrate ions. This research focuses on addressing this issue by developing an effective adsorbent for removing nitrate ions from aqueous solutions. two adsorbents Chitosan-Zeolite-Zirconium (Cs-Ze-Zr composite beads and Chitosan-Bentonite-Zirconium Cs-Bn-Zr composite beads were prepared. The study involved continuous experimentation using a fixed bed column with varying bed heights (1.5 and 3 cm) and inlet flow rates (1 and 3 ml/min). The results showed that the breakthrough time increased with higher bed heights for both Cs-Ze-Zr and Cs-Bn-Zr composite beads. Conversely, an increase in flow rate led to a decrease in breakthrough time. Notab
... Show MoreAmong the undesirable effects of soil compaction is a measurable reduction in plant growth and crop yield. The prevailing belief is that compacted tillage pans are caused by repetitive farming practices, heavy tractors, tillage tools, and field traffic. This experiment was conducted to determine and map the hardpan layers across an agricultural field through advanced technologies of precision agriculture. These valuable techniques such as data logger, yield map, and data analysis of performance indicators were linked with accurate global positioning systems (GPS) datasets. These important technologies provided the farmers and helped them to identify and manage areas of the fields with higher compacted layers. Three ground speeds 4.3
... Show MoreDuring the last two decades, nanomaterial application has gained a significant attraction into asphalt technology due to their effect in enhancing asphalt binder improving the asphaltic mixture. This study will modify the asphalt binder with two different nano types, nano SiO2 and CaCO3, at levels ranging from 1% to 7%. The resulting optimum nano-modified Asphalt will be subject to a series of rheological tests, including dynamic shear rheometer (DSR), Viscosity, and bending beam rheometer (BBR) to determine asphalt binder sensitivity towards low-medium-high temperature range. Results indicate that both nano types improved the physical characteristics of Asphalt, and 5% by weight of Asphalt was suggested as a reasonable dosage of nano-SiO2
... Show More
Abstract
Friction stir welding is a relatively new joining process, which involves the joining of metals without fusion or filler materials. In this study, the effect of welding parameters on the mechanical properties of aluminum alloys AA2024-T351 joints produced by FSW was investigated.
Different ranges of welding parameters, as input factors, such as welding speed (6 - 34 mm/min) and rotational speed (725 - 1235 rpm) were used to obtain their influences on the main responses, in terms of elongation, tensile strength, and maximum bending force. Experimental measurements of main responses were taken and analyzed using DESIGN EXPERT 8 experimental design software which was used to develop t
... Show MoreThe activation energy and optical band gap of different regions (p-type) polysilicon have been measured. Both microscopic studies and current-voltage characteristics of diodes prepared on different surface regions were carried out. Comparison of diodes parameters and microscopic studies indicate that the type of angles between boundaries has a significant effect on diodes parameters while the boundary lengths per unit area has less effect. The mechanism of Al-interaction with grain boundaries and their intersecting points at different temperature were also studies. The X-ray fluorescence spectrometry has been used for detection of diffused A1%.
Milling Machining is a widely accepted nontraditional machining technique used to produce parts with complex shapes and configurations. The material is removed in two stages roughing and finishing, the flat end cutter removed the unwanted part of material, then finished by end mill cutter. In milling technique, the role of machining factors such as cutting depth, spindle speed and feed has been studied using Taguchi technique to find its effectiveness on surface roughness. Practical procedure is done by Taguchi Standard matrix. CNC milling is the most conventional process which is used for removing of material from workpiece to perform the needed shapes. The results and relations indicate that the rate of feed is v
... Show MoreIn this work, we studied the effect of power variation on inductively coupled plasma parameters using numerical simulation. Different values were used for input power (750 W-1500 W), gas temperature 300K, gas pressure (0.02torr), 5 tourns of the copper coil and the plasma was produced at radio frequency (RF) 13.56 MHZ on the coil above the quartz chamber. For the previous purpose, a computer simulation in two dimensions axisymmetric, based on finite element method, was implemented for argon plasma. Based on the results we were able to obtain plasma with a higher density, which was represented by obtaining the plasma parameters (electron density, electric potential, total power, number density of argon ions, el
... Show More