Preferred Language
Articles
/
alkej-96
Investigation of CNC Milling Machining Parameters on Surface Roughness

Milling Machining is a widely accepted nontraditional machining technique used to produce parts with complex shapes and configurations. The material is removed in two stages roughing and finishing, the flat end cutter removed the unwanted part of material, then finished by end mill cutter. In milling technique, the role of machining factors such as cutting depth, spindle speed and feed has been studied using Taguchi technique to find its effectiveness on surface roughness.  Practical procedure is done by Taguchi Standard matrix. CNC milling is the most conventional process which is used for removing of material from workpiece to perform the needed shapes. The results and relations indicate that the rate of feed is very important factor for modeling surface roughness. The plot of S/N ratio shows that the optimum combination of the milling factors that gives the best value of surface accuracy. The best combination of milling factors has also been predicted to minimize the surface roughness.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Sep 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Study the Effects of Machining Parameters on Surface Roughness for Free Form Surface Using Taguchi Method

The surface finish of the machining part is the mostly important characteristics of products quality and its indispensable customers’ requirement. Taguchi robust parameters designs for optimizing for surface finish in turning of 7025 AL-Alloy using carbide cutting tool has been utilized in this paper. Three machining variables namely; the machining speeds (1600, 1900, and 2200) rpm, depth of cut (0.25, 0.50, 0.75) mm and the feed rates (0.12, 0.18, 0.24) mm/min utilized in the experiments. The other variables were considered as constants. The mean surface finish was utilized as a measuring of surface quality. The results clarified that increasing the speeds reduce the surface roughness, while it rises with increasing the depths and fee

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 12 2020
Journal Name
Al-khwarizmi Engineering Journal
The Influence of ProcessVariables for MillingSculptured Surfaces on Surface Roughness

Increasing the variety of products that are being designed with sculptured surfaces, efficient machining of these surfaces has become more important in many manufacturing industries. The objective of the present work is the investigation of milling parameters for the sculptured surfacesthat effecting of surface roughness during machining of Al-alloy. The machining operation implemented on C-TEK CNC milling machine. The influence of the selected variables on the chosen characteristics have been accomplished using Taguchi design approach, also ANOVA had been utilized to evaluate the contributionsof each parameter on proc

... Show More
View Publication Preview PDF
Publication Date
Mon May 27 2019
Journal Name
Al-khwarizmi Engineering Journal
Investigation the Optimization of Machining Parameters to Surface Roughness in Free Form Surface of Composite Material

The aim of this research is to investigation the optimization of the machining parameters (spindle speed, feed rate, depth of cut, diameter of cutter and number of flutes of cutter) of surface roughness for free-form surface of composite material (Aluminum 6061 reinforced boron carbide) by using HSS uncoated flat end mill cutters which are rare use of the free-form surface. Side milling (profile) is the method used in this study by CNC vertical milling machine. The purpose of using ANFIS to obtain the better prediction of surface roughness values and decreased of the error prediction value and get optimum machining parameters by using Taguchi method for the best surface roughness at spindle speed 4500 r.p.m, 920mm/rev feed rate, 0.6mm de

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Surface Roughness and Material Removal Rate in Electrochemical Machining Using Taguchi Method

Electrochemical machining is one of the widely used non-conventional machining processes to machine complex and difficult shapes for electrically conducting materials, such as super alloys, Ti-alloys, alloy steel, tool steel and stainless steel.  Use of optimal ECM process conditions can significantly reduce the ECM operating, tooling, and maintenance cost and can produce components with higher accuracy. This paper studies the effect of process parameters on surface roughness (Ra) and material removal rate (MRR), and the optimization of process conditions in ECM. Experiments were conducted based on Taguchi’s L9 orthogonal array (OA) with three process parameters viz. current, electrolyte concentration, and inter-electrode gap. Sig

... Show More
Crossref (5)
Crossref
View Publication Preview PDF
Publication Date
Tue Jul 01 2014
Journal Name
International Journal Of Artificial Intelligence And Mechatronics
Machining Polylines and Ellipses using Three-Axis CNC Milling Machine

CNC machine is used to machine complex or simple shapes at higher speed with maximum accuracy and minimum error. In this paper a previously designed CNC control system is used to machine ellipses and polylines. The sample needs to be machined is drawn by using one of the drawing software like AUTOCAD® or 3D MAX and is saved in a well-known file format (DXF) then that file is fed to the CNC machine controller by the CNC operator then that part will be machined by the CNC machine. The CNC controller using developed algorithms that reads the DXF file feeds to the machine, extracts the shapes from the file and generates commands to move the CNC machine axes so that these shapes can be machined.

View Publication Preview PDF
Publication Date
Thu Nov 29 2018
Journal Name
Al-khwarizmi Engineering Journal
Surface Roughness Prediction for Steel 304 In Edm Using Response Graph Modeling

Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on

... Show More
Crossref (1)
Crossref
View Publication
Publication Date
Mon May 27 2019
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Process Parameters That Affecting on Surface Roughness in Multi-Point Forming Process Using ANOVA Algorithm

 

Multipoint forming process is an engineering concept which means that the working surface of the punch and die is produced as hemispherical ends of individual active elements (called pins), where each pin can be independently, vertically displaced using a geometrically reconfigurable die. Several different products can be made without changing tools saved precious production time. Also, the manufacturing of very expensive rigid dies is reduced, and a lot of expenses are saved. But the most important aspects of using such types of equipment are the flexibility of the tooling. This paper presents an experimental investigation of the effect of three main parameters which are blank holder, rubber thickness and forming speed th

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon May 27 2019
Journal Name
Al-khwarizmi Engineering Journal
Investigation the Influence of SPIF Parameters on Residual Stresses for Angular Surfaces Based on Iso-Planar Tool Path

Incremental Sheet Metal Forming (ISMF) is a modern sheet metal forming technology which offers the possibility of manufacturing 3D complex parts of thin sheet metals using the CNC milling machine. The surface quality is a very important aspect in any manufacturing process. Therefore, this study focuses on the resultant residual stresses by forming parameters, namely; (tool shape, step over, feed rate, and slope angle) using Taguchi method for the products formed by single point incremental forming process (SPIF). For evaluating the surface quality, practical experiments to produce pyramid like shape have been implemented on aluminum sheets (AA1050) for thickness (0.9) mm. Three types of tool shape used in this work, the spherical tool ga

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Engineering
Optimization of Surface Roughness for Al-alloy in Electro-chemical Machining (ECM) using Taguchi Method

Electro-chemical Machining is  significant  process to remove metal with using  anodic dissolution. Electro-chemical machining use to removed metal workpiece from (7025) aluminum alloy using Potassium chloride (KCl) solution .The tool used was made from copper. In this present the optimize processes input parameter use are( current, gap and electrolyte concentration) and surface roughness (Ra) as output .The experiments on electro-chemical machining with use current (30, 50, 70)A, gap (1.00, 1.25, 1.50) mm and electrolyte concentration (100, 200, 300) (g/L).  The method (ANOVA) was used to limited the large influence factors affected on surface roughness and found the current was the large influence f

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 30 2015
Journal Name
Al-khwarizmi Engineering Journal
Studying and Modeling the Effect of Graphite Powder Mixing Electrical Discharge Machining on the Main Process Characteristics

Abstract

This paper concerned with study the effect of a graphite micro powder mixed in the kerosene dielectric fluid during powder mixing electric discharge machining (PMEDM) of high carbon high chromium AISI D2 steel. The type of electrode (copper and graphite), the pulse current and the pulse-on time and mixing powder in kerosene dielectric fluid are taken as the process main input parameters. The material removal rate MRR, the tool wear ratio TWR and the work piece surface roughness (SR) are taken as output parameters to measure the process performance. The experiments are planned using response surface methodology (RSM) design procedure. Empirical models are developed for MRR, TWR and SR, using the analysis

... Show More
View Publication Preview PDF