Borrowing in linguistics refers to the process whereby a group of speakers incorporates certain foreign linguistic components into their home language via a process known as linguistic borrowing. The process by which these foreign linguistic elements, known as loanwords, go through phonological, morphological, or semantic changes in order for them to fit the grammar of the recipient language is referred to as loanword adaptation. Loanwords go through these changes in order for them to become compatible with the grammar of the recipient language. One of the most divisive topics in loanword phonology is whether adaptations occur at the phonemic or phonetic levels, and current literature distinguishes three primary viewpoints: nativization-through-perception, nativization-through-production, and the Optimality Model. This article provides an overview of lexical borrowing and then presents a detailed account of the three models of phonological loanword adaptation.
The forensic evidence important for the sources of legislation after the book of God Almighty and the Sunnah of the purified, including what is agreed upon in the protest, which is the book and the Sunnah and consensus, and what is different in the protest, such as measurement and approval and say companions and interests sent, and that the approval of the evidence that did not agree Accordingly, the terms of the fundamentalists differed and their definition differed with the similarity between each other, and the approval in some schools is an argument is not considered as the Shaafa'is, so it may correspond to measurement with them, but the approval at the tap and those who agree is a hidden measurement is likely to clear measurement,I
... Show MoreThe present work aimed to make a comparative investigation between three different ionospheric models: IRI-2020, ASAPS and VOACAP. The purpose of the comparative study is to investigate the compatibility of predicting the Maximum Usable Frequency parameter (MUF) over mid-latitude region during the severe geomagnetic storm on 17 March 2015. Three stations distributed in the mid-latitudes were selected for study; these are (Athens (23.50o E, 38.00o N), Jeju (124.53o E, 33.6o N) and Pt. Arguello (239.50o W, 34.80o N). The daily MUF outcomes were calculated using the tested models for the three adopted sites, for a span of five-day (the day of the event and two days preceding and following the event day). The calculated datasets were co
... Show MoreAdvanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m
... Show MoreUrban land price is the primary indicator of land development in urban areas. Land prices in holly cities have rapidly increased due to tourism and religious activities. Public agencies are usually facing challenges in managing land prices in religious areas. Therefore, they require developed models or tools to understand land prices within religious cities. Predicting land prices can efficiently retain future management and develop urban lands within religious cities. This study proposed a new methodology to predict urban land prices within holy cities. The methodology is based on two models, Linear Regression (LR) and Support Vector Regression (SVR), and nine variables (land price, land area,
... Show MoreAccurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genoty
... Show More