Preferred Language
Articles
/
ERYbGIcBVTCNdQwCgzZR
Vibration response of saturated sand - foundation system
...Show More Authors

In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load applied on a footing resting on sandy soil at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into consideration include loading frequency, size of footing and different soil conditions. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used. The footings were tested by changing all parameters at the surface and at 50 mm depth below model surface. Meanwhile, the investigated parameters of the soil condition include dry and saturated sand for two relative densities; 30 % and 80 %. The dynamic loading was applied at different operating frequencies. The response of the footing was elaborated by measuring the amplitude of displacement using the vibration meter. The response of the soil to dynamic loading includes measuring the stresses inside soil media by using piezoelectric sensors. It was concluded that the final settlement (St) of the foundation increases with increasing the amplitude of dynamic force, operating frequency and degree of saturation. Meanwhile, it decreases with increasing the relative density of sand, modulus of elasticity and embedding inside soils. The maximum displacement amplitude exhibits its maximum value at the resonance frequency, which is found to be about 33.34 to 41.67 Hz. In general, embedment of footing in sandy soils leads to a beneficial reduction in dynamic response (displacement and excess pore water pressure) for all soil types in different percentages accompanied by an increase in soil strength.

View Publication
Publication Date
Thu Jun 16 2022
Journal Name
Al-khwarizmi Engineering Journal
Comparative study of vibration analysis in rotary shafts between Rayleigh's and Dunkerley's methods
...Show More Authors

The importance of vibrations in rotating rotors in engineering applications has been examined, as has the best approach to interpreting vibration data. The most extensively used analytical approaches for rotating shaft vibration analysis have been investigated. In this research, a detailed study was made of the Rayleigh and Dunkerley methods due to their importance in the special calculations to find the amplitude of vibrations in the rotation system. The multi-node method was used to calculate both Dunkerley's and Rayleigh's methods. An experimental platform was built to study the vibrations that occur in the rotating shafts, and the results were compared with theoretical calculations and with different distances of the bearings. It pro

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Vibration Measurement and Analysis of knee-Ankle-Foot Orthosis (KAFO) Metal-Metal type
...Show More Authors

This paper deals with calculate stresses in Knee-Ankle-Foot-Orthosis as a result of the effect vibration during gait cycle for patient wearing KAFO .Experimental part included measurement interface pressure between KAFO and leg due to action muscles and body weigh on Orthosis. also measurement acceleration result from motion of defected leg by accelerometer .Results of Experimental part used input in theoretical part so as to calculate stresses result from applying pressure and acceleration on KAFO by engineering analysis program ANSYS 14.Resultes show stresses values in upper KAFO greater than lower KAFO that is back to muscles more effective in thigh part lead to recoding pressure higher than pressure in shank part.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Apr 01 2009
Journal Name
6th.engineering Conference/college Of Eng. /university Of Baghdad
Comparison between analytical solution and experimental results for reinforced loose sand
...Show More Authors

Presents here in the results of comparison between the theoretical equation stated by Huang and Menq and laboratory model tests used to study the bearing capacity of square footing on geogrid-reinforced loose sand by performing model tests. The effects of several parameters were studied in order to study the general behavior of improving the soil by using the geogrid. These parameters include depth of first layer of reinforcement, vertical spacing of reinforcement layers, number of reinforcement layers and types of reinforcement layers The results show that the theoretical equation can be used to estimate the bearing capacity of loose sand.

Publication Date
Sat Jan 01 2022
Journal Name
Aip Conference Proceedings
Sand bioconsolidation/biosolidification by microbially induced carbonate precipitation using ureolytic bacteria
...Show More Authors

Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Remediation of Groundwater Contaminated with Copper Ions by Waste Foundry Sand Permeable Barrier
...Show More Authors

The permeable reactive barrier (PRB) is one of the promising innovative in situ groundwater remediation technologies, in removing of copper from a contaminated shallow aquifer. The 1:1- mixture of waste foundry sand (WFS) and Kerbala’s sand (KS) was used for PRB. The WFS was represented the reactivity material while KS used to increase the permeability of PRB only. However, Fourier-transform infrared (FTIR) analysis proved that the carboxylic and alkyl halides groups are responsible for the sorption of copper onto WFS. Batch tests have been performed to characterize the equilibrium sorption properties of the (WFS+KS) mix in copper- containing aqueous
solutions. The sorption data for Cu+2 ions, obtained by batch experiments, have be

... Show More
View Publication Preview PDF
Crossref (14)
Crossref
Publication Date
Thu Jul 25 2019
Journal Name
Journal Of Plant Protection Research
First report of phytoplasma detection on sand olive, cowpea and alfalfa in Iraq
...Show More Authors

View Publication Preview PDF
Scopus (19)
Crossref (2)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Materials Today: Proceedings
Solving high sulfate content of sand used in concrete by magnetic water process
...Show More Authors

View Publication
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sat Aug 04 2012
Journal Name
University Of Thi-qar Journal
Prediction of Ultimate Soil Bearing Capacity for Shallow Strip Foundation on Sandy Soils by Using (ANN) Techniqu
...Show More Authors

Bearing capacity of soil is an important factor in designing shallow foundations. It is directly related to foundation dimensions and consequently its performance. The calculations for obtaining the bearing capacity of a soil needs many varying parameters, for example soil type, depth of foundation, unit weight of soil, etc. which makes these calculation very variable–parameter dependent. This paper presents the results of comparison between the theoretical equation stated by Terzaghi and the Artificial Neural Networks (ANN) technique to estimate the ultimate bearing capacity of the strip shallow footing on sandy soils. The results show a very good agreement between the theoretical solution and the ANN technique. Results revealed that us

... Show More
Publication Date
Sat Mar 31 2018
Journal Name
Journal Of Engineering
Seismic Response of Nonseismically Designed Reinforced Concrete Low Rise Buildings
...Show More Authors

In this paper, the time-history responses of a square plan two-story reinforced concrete prototype building, considering the elastic and inelastic behavior of the materials, were studied numerically. ABAQUS software was used in three-dimensional (3D) nonlinear dynamic analysis to predict the inelastic response of the buildings. Concrete Damage Plasticity Model (CDPM) has been used to model the inelastic behavior of the reinforced concrete building under seismic excitation. The input data included geometric information, material properties, and the ground motion. The building structure was designed only for gravity load according to ACI 318 with

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 02 2024
Journal Name
Iraqi J Community Med
Immune Response to Respiratory Syncytial Virus
...Show More Authors

Respiratory syncytial virus (RSV) is an important cause of respiratory infection among children and infants globally. The first line of the immune response against this virus is neutrophils, macrophages, and innate lymphoid cells. Antigen‑presenting cells such as dendritic cells which present the viral antigen to T lymphocytes that mediate viral clearance by T cytotoxic cells and initiate systemic lymphopenia. Humoral immunity will also be stimulated through B‑cell‑stimulating factors derived from epithelial cells of the respiratory tract that play an important factor in antibody production and induction memory to reinfection through IgG and IgA protective antibodies that are useful in vaccine production.