Preferred Language
Articles
/
CRacDIcBVTCNdQwC5jM9
Performance evaluation of asphalt concrete mixes under varying replacement percentages of natural sand
...Show More Authors

Frequently, load associated mode of failure, rutting and fatigue, are the main failure types found in some newly constructed roads within Baghdad, the capital of Iraq, and some suburban areas. The use of excessive amount of natural sand in asphalt concrete mixes which is attractive to local contractors could be one of the possible causes to the lack of strength properties of the mixes resulting in frustration in the pavement performance. In this study, the performance properties of asphalt concrete mixes with two natural sand types, desert and river sands, were evaluated. Moreover, five replacement rates of 0, 25, 50, 75, and 100% by weight of the fine aggregate finer than 4.75 were used. The performance properties including moisture susceptibility, resilient modulus, permanent deformation, and fatigue characteristics were evaluated using indirect tensile strength, uniaxial repeated loading and repeated flexural beam tests. Also, as a part of the research objective, the laboratory tests result were used to predict the performance using VESYS computer software. Results showed that mixes with high natural sand content (NSC) are more susceptible to moisture damage and rutting, lower resilient modulus and some improvement in fatigue resistance. Based on the obtained results, the necessity has rise to revise the current local specification for asphalt concrete which specifies the limits of natural sand content in the mixes of wearing and binder courses with 25% whereas for base course mixes no limit exist yet.

Crossref
View Publication
Publication Date
Sat Aug 12 2017
Journal Name
Journal Of Engineering
Influence of Temperature Upon Permanent Deformation Parameters of Asphalt Concrete Mixes
...Show More Authors

        The performance of asphalt concrete pavement has affected by many factors, the temperature is the most important environmental one which has a large effect on the structural behavior of flexible pavement materials. The main cause of premature failure of pavement is the rutting, Due to the viscoelastic nature of the asphalt cement, rutting is more pronounced in hot climate areas because the viscosity of the asphalt binder which is
inversely related to rutting is significantly reduced with the increase in temperature resulting in a more rut susceptible paving mixtures. The objective of this study is to determine the effect of temperatures variations on the permanent deformation parameters (perm

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 11 2021
Journal Name
Engineering, Technology & Applied Science Research
Evaluation of Rutting in Conventional and Rubberized Asphalt Mixes Using Numerical Modeling Under Repeated Loads
...Show More Authors

This research aimed to predict the permanent deformation (rutting) in conventional and rubberized asphalt mixes under repeated load conditions using the Finite Element Method (FEM). A three-dimensional (3D) model was developed to simulate the Wheel Track Testing (WTT) loading. The study was conducted using the Abaqus/Standard finite element software. The pavement slab was simulated using a nonlinear creep (time-hardening) model at 40°C. The responses of the viscoplastic model under the influence of the trapezoidal amplitude of moving wheel loadings were determined for different speeds and numbers of cycles. The results indicated that a wheel speed increase from 0.5Km/h to 1.0Km/h decreased the rut depth by about 22% and 24% in conv

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Tue Nov 01 2016
Journal Name
Journal Of Engineering
Modeling of Comparative Performance of Asphalt Concrete under Hammer, Gyratory, and Roller Compaction
...Show More Authors

The main objective of this study is to develop predictive models using SPSS software (version 18) for Marshall Test results of asphalt mixtures compacted by Hammer, Gyratory, and Roller compaction. Bulk density of (2.351) gm/cc, at OAC of (4.7) % was obtained as a benchmark after using Marshall Compactor as laboratory compactive effort with 75-blows. Same density was achieved by Roller and Gyratory Compactors using its mix designed methods.

A total of (75) specimens, for Marshall, Gyratory, and Roller Compactors have been prepared, based on OAC of (4.7) % with an additional asphalt contents of more and less than (0.5) % from the optimum value. All specimens have been subjected to Marshall Test. Mathematical model

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Assessment of Traditional Asphalt Mixture Performance Using Natural Asphalt from Sulfur Springs
...Show More Authors

This research utilized natural asphalt (NA) deposits from sulfur springs in western Iraq. Laboratory tests were conducted to evaluate the performance of an asphalt mixture incorporating NA and verify its suitability for local pavement applications. To achieve this, a combination of two types of NA, namely soft SNA and hard HNA, was blended to create a binder known as Type HSNA. The resulting HSNA exhibited a penetration grade that adhered to Iraqi specifications. Various percentages of NA (20%, 40%, 60%, and 80%) were added to petroleum asphalt. The findings revealed enhanced physical properties of HSNA, which also satisfied the requirements outlined in the Iraqi specifications for asphalt cement.

Consequently, HS

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Engineering
Performance Evaluation of Plant Produced Warm Mix Asphalt
...Show More Authors

Warm mix asphalt (WMA) is relatively a new technology which enables the production and compaction of asphalt concrete mixtures at temperatures 15-40 °C lower than that of traditional hot mix asphalt HMA. In the present work, six asphalt concrete mixtures were produced in the mix plant (1 ton each) in six different batches. Half of these mixes were WMA and the other half were HMA.  Three types of fillers (limestone dust, Portland cement and hydrated lime) were used for each type of mix. Samples were then taken from these patches and transferred to lab for performance testing which includes: Marshall characteristics, moisture susceptibility (indirect tension test), resilient modulus, permanent deformation (axial repeated load test)

... Show More
Preview PDF
Crossref (8)
Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Engineering
Performance Evaluation of Plant Produced Warm Mix Asphalt
...Show More Authors

Warm mix asphalt (WMA) is relatively a new technology which enables the production and compaction of asphalt concrete mixtures at temperatures 15-40 °C lower than that of traditional hot mix asphalt HMA. In the present work, six asphalt concrete mixtures were produced in the mix plant (1 ton each) in six different batches. Half of these mixes were WMA and the other half were HMA.  Three types of fillers (limestone dust, Portland cement and hydrated lime) were used for each type of mix. Samples were then taken from these patches and transferred to lab for performance testing which includes: Marshall characteristics, moisture susceptibility (indirect tension test), resilient modulus, permanent deformation (axial repe

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Sun May 22 2022
Journal Name
Materials
Size Effect of Hydrated Lime on the Mechanical Performance of Asphalt Concrete
...Show More Authors

Despite widespread agreement on the beneficial nature of hydrated lime (HL) addition to asphalt concrete mixes, understanding of the effect of HL particle size is still limited. Previous investigations have focused mainly on two different size comparisons, and so certain guidance for a practical application cannot yet be produced. This study investigates three distinct sizes of HL, in the range of regular, nano, and sub-nano scales, for their effects on the properties of modified asphalt concretes. Five different percentages of HL as a partial replacement of ordinary limestone filler in asphalt concrete mixes were studied for wearing course application purposes. Experimental tests were conducted to evaluate the mechanical properties

... Show More
View Publication
Scopus (11)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Effect of Lime Addition Methods on Performance Related Properties of Asphalt Concrete Mixture
...Show More Authors

In the recent years, some of the newly constructed asphalt concrete pavements in Baghdad as well as other cities across Iraq showed premature failures with consequential negative impact on both roadway safety and economy. Frequently, load associated mode of failure (rutting and fatigue) as well as, occasionally, moisture damage in some poorly drained sections are the main failure types found in those newly constructed road.

In this research, hydrated lime was introduced into asphalt concrete mixtures of wearing course in two methods. The first one was the addition of dry lime on dry aggregate and the second one was the addition of dry lime on saturated surface dry aggregate moisturized by 2.0 to 3.0 percent of wa

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 07 2024
Journal Name
Infrastructures
Performance Assessment of Eco-Friendly Asphalt Binders Using Natural Asphalt and Waste Engine Oil
...Show More Authors

The depletion of petroleum reserves and increasing environmental concerns have driven the development of eco-friendly asphalt binders. This research investigates the performance of natural asphalt (NA) modified with waste engine oil (WEO) as a sustainable alternative to conventional petroleum asphalt (PA). The study examines NA modified with 10%, 20%, and 30% WEO by the weight of asphalt to identify an optimal blend ratio that enhances the binder’s flexibility and workability while maintaining high-temperature stability. Comprehensive testing was conducted, including penetration, softening point, viscosity, ductility, multiple stress creep recovery (MSCR), linear amplitude sweep (LAS), energy-dispersive X-ray spectroscopy (EDX), F

... Show More
View Publication
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
MECHANISTIC EVALUATION OF LIME-MODIFIED ASPHALT CONCRETE MIXTURES
...Show More Authors

Frequently, Load associated mode of failure (rutting and fatigue) as well as, occasionally, moisture damage in some sections poorly drained are the main failure types found in some of the newly constructed road within Baghdad as well as other cities in Iraq. The use of hydrated lime in pavement construction could be one of the possible steps taken in the direction of improving pavement performance and meeting the required standards. In this study, the mechanistic properties of asphalt concrete mixes modified with hydrated lime as a partial replacement of limestone dust mineral filler were evaluated. Seven replacement rates were used; 0,0.5, 1, 1.5, 2, 2.5 and 3 percent by weight of aggregate. Asphalt concrete mixes were prepared at their

... Show More
View Publication Preview PDF
Crossref