Preferred Language
Articles
/
DxenW5IBVTCNdQwC2K3g
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, comes in second place with a gross ratio of 91%. Furthermore, Bayesian ridge (BR), linear regressor (LR), and stochastic gradient descent (SGD), with mean square error and with accuracy ratios of 84.365%, 84.363%, and 79%. As a result, the performance precision of these regression models yields. The interaction framework was designed to be a straightforward tool for working with this paradigm. This model is a valuable tool for establishing strategies to counter the swiftness of climate change in the area under study.</span>

Scopus Crossref
View Publication
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Engineering
Image Reconstruction Using Modified Hybrid Transform
...Show More Authors

In this paper, an algorithm for reconstruction of a completely lost blocks using Modified
Hybrid Transform. The algorithms examined in this paper do not require a DC estimation
method or interpolation. The reconstruction achieved using matrix manipulation based on
Modified Hybrid transform. Also adopted in this paper smart matrix (Detection Matrix) to detect
the missing blocks for the purpose of rebuilding it. We further asses the performance of the
Modified Hybrid Transform in lost block reconstruction application. Also this paper discusses
the effect of using multiwavelet and 3D Radon in lost block reconstruction.

View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Technologies And Materials For Renewable Energy, Environment, And Sustainability: Tmrees23fr
Hyperspectral pansharpening improvement using MNF transformation
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Hemorrhoidectomy Using (10600 nm) CO2 Laser
...Show More Authors

Hemorrhoids are one of the most common surgical conditions. The hemorrhoid may cause symptoms that are: bleeding, pain, prolapse, itching, spoilage of feces, and psychologic discomfort. There are many methods for treatment of hemorrhoid like, medical therapy, rubber band ligation, electerocoagulation, stapled hemorrhoidpexy, photocoagulation, sclerothereapy, doppler guided artery ligation, Cryosurgery, and surgery. All methods for treatment of hemorrhoids have advantages, disadvantages, and limitations. Conventional haemorrhoidectomy was the traditional operation for the treatment of hemorrhoids. But recently other modalities of treatment had been used as an alternative operations including CO2 laser haemorrhoidectomy. This work aims to

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Galaxy Morphological Image Classification using ResNet
...Show More Authors

     Machine learning-based techniques are used widely for the classification of images into various categories. The advancement of Convolutional Neural Network (CNN) affects the field of computer vision on a large scale. It has been applied to classify and localize objects in images. Among the fields of applications of CNN, it has been applied to understand huge unstructured astronomical data being collected every second. Galaxies have diverse and complex shapes and their morphology carries fundamental information about the whole universe. Studying these galaxies has been a tremendous task for the researchers around the world. Researchers have already applied some basic CNN models to predict the morphological classes

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jun 06 2010
Journal Name
Baghdad Science Journal
Using Neural Network with Speaker Applications
...Show More Authors

In Automatic Speech Recognition (ASR) the non-linear data projection provided by a one hidden layer Multilayer Perceptron (MLP), trained to recognize phonemes, and has previous experiments to provide feature enhancement substantially increased ASR performance, especially in noise. Previous attempts to apply an analogous approach to speaker identification have not succeeded in improving performance, except by combining MLP processed features with other features. We present test results for the TIMIT database which show that the advantage of MLP preprocessing for open set speaker identification increases with the number of speakers used to train the MLP and that improved identification is obtained as this number increases beyond sixty.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
edge detection using modification prewitt operators
...Show More Authors

in this paper we adopted ways for detecting edges locally classical prewitt operators and modification it are adopted to perform the edge detection and comparing then with sobel opreators the study shows that using a prewitt opreators

View Publication Preview PDF
Crossref
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
An Embedded Data Using Slantlet Transform
...Show More Authors

Data hiding is the process of encoding extra information in an image by making small modification to its pixels. To be practical, the hidden data must be perceptually invisible yet robust to common signal processing operations. This paper introduces a scheme for hiding a signature image that could be as much as 25% of the host image data and hence could be used both in digital watermarking as well as image/data hiding. The proposed algorithm uses orthogonal discrete wavelet transforms with two zero moments and with improved time localization called discrete slantlet transform for both host and signature image. A scaling factor ? in frequency domain control the quality of the watermarked images. Experimental results of signature image

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Image Zooming Using Inverse Slantlet Transform
...Show More Authors

Digital image is widely used in computer applications. This paper introduces a proposed method of image zooming based upon inverse slantlet transform and image scaling. Slantlet transform (SLT) is based on the principle of designing different filters for different scales.

      First we apply SLT on color image, the idea of transform color image into slant, where large coefficients are mainly the   signal and smaller one represent the noise. By suitably modifying these coefficients , using scaling up image by  box and Bartlett filters so that the image scales up to 2X2 and then inverse slantlet transform from modifying coefficients using to the reconstructed image .

  &nbs

... Show More
View Publication Preview PDF
Publication Date
Sun Aug 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Edge Detection Using Circular Sliding Window
...Show More Authors

    In this paper, we devoted to use circular shape sliding block, in image edge determination. The circular blocks have symmetrical properties in all directions for the mask points around the central mask point. Therefore, the introduced method is efficient to be use in detecting image edges, in all directions curved edges, and lines. The results exhibit a very good performance in detecting image edges, comparing with other edge detectors results.

View Publication Preview PDF
Publication Date
Wed Dec 26 2018
Journal Name
Iraqi Journal Of Science
Outdoor Scene Classification Using Multiple SVM
...Show More Authors

This paper presents a hierarchical two-stage outdoor scene classification method using multi-classes of Support Vector Machine (SVM). In this proposed method, the gist feature of all the images in the database is extracted first to obtain the feature vectors. The image of database is classified into eight outdoor scenes classes, four manmade scenes and four natural scenes. Second, a hierarchical classification is applied, where the first stage classifies all manmade scene classes against all natural scene classes, while the second stage of a hierarchical classification classifies the outputs of first stage into either one of the four manmade scene classes or natural scene classes. Binary SVM and multi-classes SVMs are employed in the fir

... Show More
View Publication Preview PDF