<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, comes in second place with a gross ratio of 91%. Furthermore, Bayesian ridge (BR), linear regressor (LR), and stochastic gradient descent (SGD), with mean square error and with accuracy ratios of 84.365%, 84.363%, and 79%. As a result, the performance precision of these regression models yields. The interaction framework was designed to be a straightforward tool for working with this paradigm. This model is a valuable tool for establishing strategies to counter the swiftness of climate change in the area under study.</span>
An automatic text summarization system mimics how humans summarize by picking the most significant sentences in a source text. However, the complexities of the Arabic language have become challenging to obtain information quickly and effectively. The main disadvantage of the traditional approaches is that they are strictly constrained (especially for the Arabic language) by the accuracy of sentence feature functions, weighting schemes, and similarity calculations. On the other hand, the meta-heuristic search approaches have a feature tha
... Show MoreThis work presents a comparison between the Convolutional Encoding CE, Parallel Turbo code and Low density Parity Check (LDPC) coding schemes with a MultiUser Single Output MUSO Multi-Carrier Code Division Multiple Access (MC-CDMA) system over multipath fading channels. The decoding technique used in the simulation was iterative decoding since it gives maximum efficiency at higher iterations. Modulation schemes used is Quadrature Amplitude Modulation QAM. An 8 pilot carrier were
used to compensate channel effect with Least Square Estimation method. The channel model used is Long Term Evolution (LTE) channel with Technical Specification TS 25.101v2.10 and 5 MHz bandwidth bandwidth including the channels of indoor to outdoor/ pedestrian
In this work, the calculation of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei are calculated. Each nuclide under study are divided into two parts; one for core part and the second for halo part. The core part are studied using harmonic-oscillator radial wave functions, while the halo part are studied using the radial wave functions of Woods-Saxon potential. A very good agreement are obtained with experimental data for matter density distributions and available size radii. Besides, the quadrupole moment for 11Li are generated.
In this paper, we present a comparison of double informative priors which are assumed for the parameter of inverted exponential distribution.To estimate the parameter of inverted exponential distribution by using Bayes estimation ,will be used two different kind of information in the Bayes estimation; two different priors have been selected for the parameter of inverted exponential distribution. Also assumed Chi-squared - Gamma distribution, Chi-squared - Erlang distribution, and- Gamma- Erlang distribution as double priors. The results are the derivations of these estimators under the squared error loss function with three different double priors.
Additionally Maximum likelihood estimation method
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters (as done in the first edition 2019). Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. While the revised new chapters have been added (as the curr
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters (as done in the first edition 2019). Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. While the revised new chapters have been added (as the curr
... Show MoreThe current research aims to prepare a proposed Programmebased sensory integration theory for remediating some developmental learning disabilities among children, researchers prepared a Programme based on sensory integration through reviewing studies related to the research topic that can be practicedby some active teaching strategies (cooperative learning, peer learning, Role-playing, and educational stories). The Finalformat consists of(39) training sessions.
The research aims to verify the role of the Human Resources Strategic Management (HRSM) in enhancing the strategic success factors for talent (SSFT) in the General Tourism Authority by distributing a questionnaire consisting of (36) paragraphs on an intentional sample represented by the higher departments as it reached (50) and the sample valid for testing was (44) Person and to test the relationships between the two research variables, the researchers used statistical methods represented by (Bartlett test / mean / simple regression coefficient / difference coefficient, alpha- cronbachAch, confirmatory factor Analysis ) through the statistical program (SPSS v.23 & AMOS v.23). In enhancing the factors of success for talent management in the
... Show MoreIn recent decades, the identification of faces with and without masks from visual data, such as video and still images, has become a captivating research subject. This is primarily due to the global spread of the Corona pandemic, which has altered the appearance of the world and necessitated the use of masks as a vital measure for epidemic prevention. Intellectual development based on artificial intelligence and computers plays a decisive role in the issue of epidemic safety, as the topic of facial recognition and identifying individuals who wear masks or not was most prominent in the introduction and in-depth education. This research proposes the creation of an advanced system capable of accurately identifying faces, both with and
... Show MoreThe growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to co
... Show More