<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, comes in second place with a gross ratio of 91%. Furthermore, Bayesian ridge (BR), linear regressor (LR), and stochastic gradient descent (SGD), with mean square error and with accuracy ratios of 84.365%, 84.363%, and 79%. As a result, the performance precision of these regression models yields. The interaction framework was designed to be a straightforward tool for working with this paradigm. This model is a valuable tool for establishing strategies to counter the swiftness of climate change in the area under study.</span>
The information revolution، the new language has become one for all the peoples of the world through handling and exchange and to participate in all key areas (economic، cultural and scientific) and Accounting episode of this revolution has turned most of the traditional systems (manual) in companies to automated systems، this transformation in the regulations summoned from the auditors that develops their traditional examination automated systems so had to provide tools for auditing help auditors to keep abreast of developments and as a result there is no evidence checksum Local Private audited automated systems came search to provide evidence helps auditors for guidance as part of COBIT، which provides audit procedures Detailed inf
... Show MoreAbstract:
This research aims to compare Bayesian Method and Full Maximum Likelihood to estimate hierarchical Poisson regression model.
The comparison was done by simulation using different sample sizes (n = 30, 60, 120) and different Frequencies (r = 1000, 5000) for the experiments as was the adoption of the Mean Square Error to compare the preference estimation methods and then choose the best way to appreciate model and concluded that hierarchical Poisson regression model that has been appreciated Full Maximum Likelihood Full Maximum Likelihood with sample size (n = 30) is the best to represent the maternal mortality data after it has been reliance value param
... Show MoreThe research deal with three variables of exceptional importance to organization business firms. These variables are emotional intelligence, transformational leadership, and organizational performance. The aim of this research is to determine the effect of emotional intelligence and transformational leadership on organizational performance at the banking sector, which is represented by Al-Rafidain Bank. The problem of the research is expressed by many questions related with the nature of the interrelationships and effects among research’s variables. The researcher has depended upon the descriptions - analytical approach. on a random sample of (80 ) managers
... Show MoreThe study seeks the relationship between the mathematical-procedural Knowledge and the logical-mathematical intelligence among students at the third stage in mathematics department. To this end, three questions were arisen: what is the level of mathematical-procedural Knowledge among the third stage students in mathematics department regarding their gender? Do male or female students have more logical-mathematical intelligence and are there significant differences base on their gender? What kind of correlation is between the level of mathematical-procedural Knowledge and the logical-mathematical intelligence of male and female students in the third stage in the mathematics department? A sample of (75) male and female students at the thir
... Show MoreBackground: There is a pronounced controversy regarding the dental and mental consequences of thumb sucking habit, which is a familiar nonnutritive pattern of sucking. Commonly, this behavior is harmless, yet those who sustain this pattern may have dental alterations and emotional difficulties. Children’s intelligence level influences their capabilities to judge, evaluate and handle priorities and/or problems profoundly and precisely. Thumb sucking habit might be a manner of liberating the psychological tenseness among several children. Objective: The purpose of this study is to assess the prevalence of thumb sucking habit and its relation to the eruption of permanent teeth and IQ among children aged 6-7 years old. Subjects and methods: I
... Show MoreNonlinear time series analysis is one of the most complex problems ; especially the nonlinear autoregressive with exogenous variable (NARX) .Then ; the problem of model identification and the correct orders determination considered the most important problem in the analysis of time series . In this paper , we proposed splines estimation method for model identification , then we used three criterions for the correct orders determination. Where ; proposed method used to estimate the additive splines for model identification , And the rank determination depends on the additive property to avoid the problem of curse dimensionally . The proposed method is one of the nonparametric methods , and the simulation results give a
... Show MoreOften times, especially in practical applications, it is difficult to obtain data that is not tainted by a problem that may be related to the inconsistency of the variance of error or any other problem that impedes the use of the usual methods represented by the method of the ordinary least squares (OLS), To find the capabilities of the features of the multiple linear models, This is why many statisticians resort to the use of estimates by immune methods Especially with the presence of outliers, as well as the problem of error Variance instability, Two methods of horsepower were adopted, they are the robust weighted least square(RWLS)& the two-step robust weighted least square method(TSRWLS), and their performance was verifie
... Show MoreIn this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending on the mean square error criteria in where the estimation methods that were used are (Generalized Least Squares, M Robust, and Laplace), and for different sizes of samples (20, 40, 60, 80, 100, 120). The M robust method is demonstrated the best metho
... Show More