<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, comes in second place with a gross ratio of 91%. Furthermore, Bayesian ridge (BR), linear regressor (LR), and stochastic gradient descent (SGD), with mean square error and with accuracy ratios of 84.365%, 84.363%, and 79%. As a result, the performance precision of these regression models yields. The interaction framework was designed to be a straightforward tool for working with this paradigm. This model is a valuable tool for establishing strategies to counter the swiftness of climate change in the area under study.</span>
Abstract
The term public budget defects became nowadays a chronic, economical phenomenon, almost all the countries weather advanced or development country suffered from it, despite the different visions to economic schools of a thought to accept or reject the deficit in public budget but the prevailed opinion that is needed to rule the role of the state by reducing the public spending which led to continuous deficits in public budget and the consequent upon increase in government borrowing, increase taxes on income and wealth, thus weakening the in contrive for private investment which contributed to the increase of in flationary stagnation, it became a duty to state covered by the lack of financial sources
... Show MoreUse of lower squares and restricted boxes
In the estimation of the first-order self-regression parameter
AR (1) (simulation study)
Achieving an accurate and optimal rate of penetration (ROP) is critical for a cost-effective and safe drilling operation. While different techniques have been used to achieve this goal, each approach has limitations, prompting researchers to seek solutions. This study’s objective is to conduct the strategy of combining the Bourgoyne and Young (BYM) ROP equations with Bagging Tree regression in a southern Iraqi field. Although BYM equations are commonly used and widespread to estimate drilling rates, they need more specific drilling parameters to capture different ROP complexities. The Bagging Tree algorithm, a random forest variant, addresses these limitations by blending domain kno
This research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer
... Show MoreAbstract
Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous varia
... Show MoreArtificial Neural Network (ANN) is widely used in many complex applications. Artificial neural network is a statistical intelligent technique resembling the characteristic of the human neural network. The prediction of time series from the important topics in statistical sciences to assist administrations in the planning and make the accurate decisions, so the aim of this study is to analysis the monthly hypertension in Kalar for the period (January 2011- June 2018) by applying an autoregressive –integrated- moving average model and artificial neural networks and choose the best and most efficient model for patients with hypertension in Kalar through the comparison between neural networks and Box- Je
... Show MoreBreast cancer has got much attention in the recent years as it is a one of the complex diseases that can threaten people lives. It can be determined from the levels of secreted proteins in the blood. In this project, we developed a method of finding a threshold to classify the probability of being affected by it in a population based on the levels of the related proteins in relatively small case-control samples. We applied our method to simulated and real data. The results showed that the method we used was accurate in estimating the probability of being diseased in both simulation and real data. Moreover, we were able to calculate the sensitivity and specificity under the null hypothesis of our research question of being diseased o
... Show More