<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, comes in second place with a gross ratio of 91%. Furthermore, Bayesian ridge (BR), linear regressor (LR), and stochastic gradient descent (SGD), with mean square error and with accuracy ratios of 84.365%, 84.363%, and 79%. As a result, the performance precision of these regression models yields. The interaction framework was designed to be a straightforward tool for working with this paradigm. This model is a valuable tool for establishing strategies to counter the swiftness of climate change in the area under study.</span>
The main objective of this paper is to designed algorithms and implemented in the construction of the main program designated for the determination the tenser product of representation for the special linear group.
In this paper, we investigate the connection between the hierarchical models and the power prior distribution in quantile regression (QReg). Under specific quantile, we develop an expression for the power parameter ( ) to calibrate the power prior distribution for quantile regression to a corresponding hierarchical model. In addition, we estimate the relation between the and the quantile level via hierarchical model. Our proposed methodology is illustrated with real data example.
Economic organizations operate in a dynamic environment, which necessitates the use of quantitative techniques to make their decisions. Here, the role of forecasting production plans emerges. So, this study aims to the analysis of the results of applying forecasting methods to production plans for the past years, in the Diyala State Company for Electrical Industries.
The Diyala State Company for Electrical Industries was chosen as a field of research for its role in providing distinguished products as well as the development and growth of its products and quality, and because it produces many products, and the study period was limited to ten years, from 2010 to 2019. This study used the descriptive approa
... Show MoreThe research aims to study the entrepreneurial performance of the banks, according to the intelligence of competitive and strategic as the entrepreneurial performance is the one who does not stand the benefits of excellence in accomplished when just achieving the bank's objectives planned, but exceed it down to creativity in accomplishing these goals in a manner leads to making a entrepreneurial bank in the markets and the focus the eyes of competitors and the banks and other Following his example.
Was chosen the subject of research and strategic intelligence and competitive because of its impact on the strategic success of the banking sector, the fact is the entrepreneurial in the Iraqi banking mar
... Show MoreThe study aimed to get acquainted with kindergarten teachers in the development of
emotional intelligence in children, To achieve this a study too, which consisted of 40 items,
within four areas was condncted: (managing emotions, emotional knowledge, empathy, social
networking) The study tool was applied to the sample amounting (200) teachers of the
kindergarten teachers in the province of Jerash and after analyzing the results statistically
using arithmetic averages standard deviations and variance analysis quartet the following
results were reached :
- presence of statistically significant differences at the level of (α =0,05) is attributable to the
impact of the educational level in the areas of empathy and so
Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreThe Intelligence of the Child in Relation to some Variables