Evolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust EA with more biological consistency. For this purpose, a new crossover operator is suggested where biological information in terms of both gene semantic similarity and protein functional similarity is fed into its design. To reflect the heuristic roles of both semantic and functional similarities, this paper introduces two gene ontology (GO) aware crossover operators. These are direct annotation-aware and inherited annotation-aware crossover operators. The first strategy is handled with the direct gene ontology annotation of the proteins, while the second strategy is handled with the directed acyclic graph (DAG) of each gene ontology term in the gene product. To conduct our experiments, the proposed EAs with GO-aware crossover operators are compared against the state-of-the-art heuristic, canonical EAs with the traditional crossover operator, and GO-based EAs. Simulation results are evaluated in terms of recall, precision, and F measure at both complex level and protein level. The results prove that the new EA design encourages a more reliable treatment of exploration and exploitation and, thus, improves the detection ability for more accurate protein complex structures.
The design of this paper is to find the possible correlation of Epstein Barr virus infection ina group of Iraqi women with cervical carcinoma though detection of Latent Membrane Protein 1 (LMP1) in these cervical tissues. Paraffinized blocks of two groups were included. The first sample of 30 cervical carcinomatous tissues and 15 biopsies from an apparently normal cervical tissues. All the samples were sectioned on a positive charged slides with 4 mm – thickness then submitted for immunohistochemical (IHC) staining to detect viral LMP1 expression. Sixty three percentage (19 out of 30) of the studies group showed positive overexpression as shown in with a significant association of the expression with cervical cancer with a significant ass
... Show MoreObjective(s): To measure serum C-reactive protein (CRP) titer as a predictive diagnosis of acute hepatitis C virus (HCV)
infection.
Methodology: Two hundred and ten patients with acute HCV infection and 234 apparently healthy individuals as
control group were enrolled in this study in Baghdad medical city (Teaching Laboratories). The patents include
74(35.2%) females and 136 (64.8%) males with mean age (27±16.5) years. The control group includes 114 (48.7%)
females and 120 (51.3%) males with mean age (26±5.8) years. Blood samples were collected from out patients from
Alfadul in Baghdad city. Sera were separated and stored at 20 0
C. The diagnosis of acute HCV infection was based on
detection of HC Ag and anti- H
Total protein and total fucose were determined in sera of thyroid
disorder patients.
Sera of (40) diagnosed by consultant hyperthyroidism, and 40 hypothyroidism were analyzed for the above parameter for control, sera of (40) normal individuals were used.
They were healthy with no appearing disorder results analysis revealed no significant differences (P<0.05) in the (mean ±SD) of total protein values in sera of hyper and hypothyroidism were compared
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show MoreThirty nine (12.8%) isolates of Staphylococcus aureus were isolated from 304 healthy human (Nasal swabs). It was found that percentage of males that have S. aureus is more than female's percentage. These isolates (39) were tested with different tests. Twenty seven isolates (69.23 %) were positive for Staphylococcus protein —A (SPA) ,thirty seven ( 94.8 %) were positive for tube coagulase , thirty five ( 89.7 % ) were positive with clumping factor and thirty two ( 82.05 %) had 13 — hemolytic on blood agar. It was found that 100% of the isolates (39 isolates) were positive with one, two or three tests (tube coagulase, clumping factor and SPA).
Introduction and Aim: Pseudomonas aeruginosa is a nosocomial infection with an ability to develop high levels of antibiotic resistance. The efflux pump system is one of the mechanisms that is linked to multidrug resistance in P. aeruginosa. In this study, we employed siRNA loaded on gold nanoparticles against the MexA efflux pump gene to decrease the MexA gene expression in P. aeruginosa and estimated antibiotic resistance after gene silencing. Materials and Methods: This study examined four strains of P. aeruginosa isolated from patients in various hospitals in Baghdad. Bacteria isolated were identified by biochemical tests and Vitek compact 2 system. Single-stranded siRNA (33bp) designed in this study was loaded onto gold
... Show MoreIn this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of soc
... Show MoreIn this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of soc
... Show MoreNecessary and sufficient conditions for the operator equation I AXAX n*, to have a real positive definite solution X are given. Based on these conditions, some properties of the operator A as well as relation between the solutions X andAare given.