Evolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust EA with more biological consistency. For this purpose, a new crossover operator is suggested where biological information in terms of both gene semantic similarity and protein functional similarity is fed into its design. To reflect the heuristic roles of both semantic and functional similarities, this paper introduces two gene ontology (GO) aware crossover operators. These are direct annotation-aware and inherited annotation-aware crossover operators. The first strategy is handled with the direct gene ontology annotation of the proteins, while the second strategy is handled with the directed acyclic graph (DAG) of each gene ontology term in the gene product. To conduct our experiments, the proposed EAs with GO-aware crossover operators are compared against the state-of-the-art heuristic, canonical EAs with the traditional crossover operator, and GO-based EAs. Simulation results are evaluated in terms of recall, precision, and F measure at both complex level and protein level. The results prove that the new EA design encourages a more reliable treatment of exploration and exploitation and, thus, improves the detection ability for more accurate protein complex structures.
A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show MoreThe alterations in glyoxylate reductase and hydroxy-pyruvate reductase concentrations in the sera and the genetic alterations associated with calcium oxalate kidney stones in Iraqi patients were not studied previously so this study aimed to focus on these points. This study included 80 subjects; they were 50 patients with calcium oxalate stones compared to 30 apparently healthy controls. Biochemical investigations for kidney functions (creatinine, urea, and uric acid), were performed on the sera of both groups. Also, complete blood count, random blood sugar, and blood group tests. Furthermore, urine had been collected for General Urine Examination to visualize oxalate crystals in the urine of the patient. Also, the GRHPR
... Show MoreAfter about twelve months or maybe more, some people can’t achieve pregnancy. This might be a sign of infertility as a reproductive system disease. The following study was carried out to investigate the DAZ 1 gene methylation level and its association with azoospermia in Iraqi patients. One hundred and fifty human blood samples were collected from from different regions in Baghdad governorate, including (private medicals Labs and the high institute for infertility diagnosis assisted reproductive techniques and Kamal Al- Samara'ay IVF Hospital) from both fertile and infertile men. The control group consists of 50 samples ranging from 22 to 51 years old, while the patient (infertile group) consists of 100 samples ranging between 25 and 51 y
... Show MoreA charge transfer complex formed by interaction between nitron as electron donor with curcumin(1 ) as electron acceptor in ethanol at the temperature of theroom to form a colored complex. The optimum conditions of complex formation were investigated by Univariate method. The linearity range of complex was (3.124– 53.11) μg.mL-1 at 442 nm with molar absorptivity (1858.33) L.mol-1.cm-1, Sandell's sensitivity (0.1681μg.cm-2), and with a correlation coefficient (0.9935). Both modified attapulgite and modified attapulgite – complex have been characterized by using , FTIR, SEM, AFM, and XRD. Theadsorption behaviourof complex onto the modified attapulgite has been researchedthrough the variation of the parameters like the adsorbent weight, p
... Show More2929-2933
Molasse medium containing different concentrations of (NH4)2 SO4, (NH4)3 PO4, urea, KCI, and P2O5 were compared with the medium used for commercial production of C. utilis in a factory south of Iraq. An efficient medium, which produced 19. 16% dry wt. and 5. 78% protein, was developed. The effect of adding various concentrations of micronutrients (FeSO4, 7T20, MnSO4. 7H20, ZnSO4. 7E20) was also studied. Results showed that FeSo4. 7H20 caused a noticeable increase in both dry wt. and protein content of the yeast.
Credit risk assessment has become an important topic in financial risk administration. Fuzzy clustering analysis has been applied in credit scoring. Gustafson-Kessel (GK) algorithm has been utilised to cluster creditworthy customers as against non-creditworthy ones. A good clustering analysis implemented by good Initial Centres of clusters should be selected. To overcome this problem of Gustafson-Kessel (GK) algorithm, we proposed a modified version of Kohonen Network (KN) algorithm to select the initial centres. Utilising similar degree between points to get similarity density, and then by means of maximum density points selecting; the modified Kohonen Network method generate clustering initial centres to get more reasonable clustering res
... Show MoreThis paper presents a hybrid genetic algorithm (hGA) for optimizing the maximum likelihood function ln(L(phi(1),theta(1)))of the mixed model ARMA(1,1). The presented hybrid genetic algorithm (hGA) couples two processes: the canonical genetic algorithm (cGA) composed of three main steps: selection, local recombination and mutation, with the local search algorithm represent by steepest descent algorithm (sDA) which is defined by three basic parameters: frequency, probability, and number of local search iterations. The experimental design is based on simulating the cGA, hGA, and sDA algorithms with different values of model parameters, and sample size(n). The study contains comparison among these algorithms depending on MSE value. One can conc
... Show More