Accurate prediction and optimization of morphological traits in Roselle are essential for enhancing crop productivity and adaptability to diverse environments. In the present study, a machine learning framework was developed using Random Forest and Multi-layer Perceptron algorithms to model and predict key morphological traits, branch number, growth period, boll number, and seed number per plant, based on genotype and planting date. The dataset was generated from a field experiment involving ten Roselle genotypes and five planting dates. Both RF and MLP exhibited robust predictive capabilities; however, RF (R² = 0.84) demonstrated superior performance compared to MLP (R² = 0.80), underscoring its efficacy in capturing the nonlinear genotype-by-environment interactions. Permutation-based feature importance analysis further revealed that planting date had a more significant impact on trait variation than genotype. To identify optimal combinations of genotype and planting date for maximizing morphological traits, the RF model was integrated with the Non-dominated Sorting Genetic Algorithm II (NSGA-II). According to the RF–NSGA-II optimization results, the optimal values, including 26 branches per plant, a growth period of 176 days, 116 bolls per plant, and 1517 seed numbers per plant, were achieved with the Qaleganj genotype planted on May 5. Collectively, these findings highlight the potential of integrating machine learning and evolutionary optimization algorithms as powerful computational tools for crop improvement and agronomic decision-making.
New trends in teaching and learning theory are considered a theoretical axis
from which came the background that depends on any source, or practice sample or
teaching plane, accuracy and simplicity prevent the development of the teaching
process. Many attempts have come to scene to illuminate the teaching background,
but they have not exceed those remarkable patterns and methods. Thus, the
appearance of the teaching theory have been hindered.
This led to the need for research and development in the field of teaching to
find out a specific teaching theory according to the modern trends and concepts.
Teaching is regarded a humanitarian process which aims at helping those who
want to acquire knowledge, since teach
Artificial intelligence techniques are reaching us in several forms, some of which are useful but can be exploited in a way that harms us. One of these forms is called deepfakes. Deepfakes is used to completely modify video (or image) content to display something that was not in it originally. The danger of deepfake technology impact on society through the loss of confidence in everything is published. Therefore, in this paper, we focus on deepfakedetection technology from the view of two concepts which are deep learning and forensic tools. The purpose of this survey is to give the reader a deeper overview of i) the environment of deepfake creation and detection, ii) how deep learning and forensic tools contributed to the detection
... Show MoreThe study aimed to prepare quick response codes to learn some of the technical skills of the second graders in the Faculty of Physical Education and Sports Sciences. The experimental method was used in the design of the experimental and control experimental and control groups. The research sample was represented by second-graders in the College of Physical Education and Sports Sciences / University of Baghdad, and by lot, the second division (a) was chosen to represent the experimental group that applied the inverse method using the QR code, and the second division (g) to represent the control group and applied the traditional method. (10) Students per group. After the tribal tests, his main experiment was carried out for 10 weeks with one
... Show MoreThe study aimed to prepare quick response codes to learn some of the technical skills of the second graders in the Faculty of Physical Education and Sports Sciences. The experimental method was used in the design of the experimental and control experimental and control groups. The research sample was represented by second-graders in the College of Physical Education and Sports Sciences / University of Baghdad, and by lot, the second division (a) was chosen to represent the experimental group that applied the inverse method using the QR code, and the second division (g) to represent the control group and applied the traditional method. (10) Students per group. After the tribal tests, his main experiment was carried out for 10 weeks with one
... Show MoreIn this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like iden
... Show MoreAbstract
The prevention of bankruptcy not only prolongs the economic life of the company and increases its financial performance, but also helps to improve the general economic well-being of the country. Therefore, forecasting the financial shortfall can affect various factors and affect different aspects of the company, including dividends. In this regard, this study examines the prediction of the financial deficit of companies that use the logistic regression method and its impact on the earnings per share of companies listed on the Iraqi Stock Exchange. The time period of the research is from 2015 to 2020, where 33 companies that were accepted in the Iraqi Stock Exchange were selected as a sample, and the res
... Show MoreThe results of the current study showed that the liver of H. javanicus appeared as large lobulated organ divided into six distinct lobes, that filled the cranial region and little extended to the middle region of abdominal cavity. On the other hand, liver of S. carolinensis laid against the diaphragm, occupied the cranial region of the abdominal cavity and consisted of five lobes. The liver is surrounded with a thin capsule of dense regular collagenous connective tissue and few numbers of smooth muscles fibers can be seen in the capsule that covered the squirrel liver. The liver parenchyma divided into a large number of interconnected hepatic lobules marked only by the abundant amount of connective tissue bordered the triads, and within the
... Show MoreIn high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection cri
... Show More