In this study, iron was coupled with copper to form a bimetallic compound through a biosynthetic method, which was then used as a catalyst in the Fenton-like processes for removing direct Blue 15 dye (DB15) from aqueous solution. Characterization techniques were applied on the resultant nanoparticles such as SEM, BET, EDAX, FT-IR, XRD, and zeta potential. Specifically, the rounded and shaped as spherical nanoparticles were found for green synthesized iron/copper nanoparticles (G-Fe/Cu NPs) with the size ranging from 32-59 nm, and the surface area was 4.452 m2/g. The effect of different experimental factors was studied in both batch and continuous experiments. These factors were H2O2 concentration, G-Fe/CuNPs amount, pH, initial DB15 concentration, and temperature in the batch system. The batch results showed 98% of 100 mg/L of DB15 was degraded with optimum H2O2 concentration, G-Fe/Cu-NPs dose, pH, and temperature 3.52 mmol/L, 0.7 g/L, 3, and 50℃ respectively. For the continuous mode, the influences of initial DB15 concentration, feed flow rate, G-Fe/Cu-NPs depth were investigated using an optimized experimental Box-Behnken design, while the conditions of pH and H2O2 concentration were based on the best value found in the batch experiments. The model optimization was set the parameters at 2.134 ml/min flow rate, 26.16 mg/L initial dye concentration, and 1.42 cm catalyst depth. All the parameters of the breakthrough curve were also studied in this study including break time, saturation time, length of mass transfer zone, the volume of bed, and volume effluent.
Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a
... Show MoreCybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a
... Show MoreA substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.
... Show MoreThe present study intends to prepare nanofibers mat of polyacrylonitrile by electrospinning technique and investigates their adsorption capacity to Congo red dye from the aqueous solution, after characterize it by different techniques such as FTIR, SEM, EDA, XRD and BET. The influence factors on adsorption were studied including adsorbent dosage, initial concentration, contact time, pH and ionic strength. The results confirmed that the increasing in pH decreases the adsorption capacity. So, the optimum adsorbent dosage, initial concentration and contact time were 0.006 g, 25 mg/L and 150 min respectively. The isotherm models of Freundlich and Langmuir were applied on the experimental adsorption data to evaluate the maximum capacity and ener
... Show MoreIn this research, the dynamics process of charge transfer from the sensitized D35CPDT dye to tin(iv) oxide( ) or titanium dioxide ( ) semiconductors are carried out by using a quantum model for charge transfer. Different chemical solvents Pyridine, 2-Methoxyethanol. Ethanol, Acetonitrile, and Methanol have been used with both systems as polar media surrounded the systems. The rate for charge transfer from photo-excitation D35CPDTdye and injection into the conduction band of or semiconductors vary from a to for system and from a to for the system, depending on the charge transfer parameters strength coupling, free energy, potential of donor and acceptor in the system. The charge transfer rate in D35CPDT / the syst
... Show MoreIn the present work, bentonite clay was used as an adsorbent for the removal of a new prepared mono azo dye, 4-[6-bromo benzothiazolyl azo] thymol (BTAT) using batch adsorption method. The effect of many factors like adsorption time, adsorbent weight, initial BTAT concentration and temperature has been studied. The equilibrium adsorption data was described using Langmuir and frundlich adsorption isotherm. Based on kinetics study, it was found that the adsorption process follow pseudo second order kinetics. Thermodynamics data such as Gibbes Free energy ∆Gᵒ, entropy ∆Sᵒ and ∆Hᵒ were also determined using Vant Hoff plot.
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show More