Preferred Language
Articles
/
CxaBCYsBVTCNdQwC2scy
Heterogeneous catalytic degradation of dye by Fenton-like oxidation over a continuous system based on Box–Behnken design and traditional batch experiments
...Show More Authors

In this study, iron was coupled with copper to form a bimetallic compound through a biosynthetic method, which was then used as a catalyst in the Fenton-like processes for removing direct Blue 15 dye (DB15) from aqueous solution. Characterization techniques were applied on the resultant nanoparticles such as SEM, BET, EDAX, FT-IR, XRD, and zeta potential. Specifically, the rounded and shaped as spherical nanoparticles were found for green synthesized iron/copper nanoparticles (G-Fe/Cu NPs) with the size ranging from 32-59 nm, and the surface area was 4.452 m2/g. The effect of different experimental factors was studied in both batch and continuous experiments. These factors were H2O2 concentration, G-Fe/CuNPs amount, pH, initial DB15 concentration, and temperature in the batch system. The batch results showed 98% of 100 mg/L of DB15 was degraded with optimum H2O2 concentration, G-Fe/Cu-NPs dose, pH, and temperature 3.52 mmol/L, 0.7 g/L, 3, and 50℃ respectively. For the continuous mode, the influences of initial DB15 concentration, feed flow rate, G-Fe/Cu-NPs depth were investigated using an optimized experimental Box-Behnken design, while the conditions of pH and H2O2 concentration were based on the best value found in the batch experiments. The model optimization was set the parameters at 2.134 ml/min flow rate, 26.16 mg/L initial dye concentration, and 1.42 cm catalyst depth. All the parameters of the breakthrough curve were also studied in this study including break time, saturation time, length of mass transfer zone, the volume of bed, and volume effluent.

Scopus Crossref
View Publication
Publication Date
Tue Nov 01 2022
Journal Name
Environmental Technology & Innovation
Photo-Fenton-like degradation of direct blue 15 using fixed bed reactor containing bimetallic nanoparticles: Effects and Box–Behnken optimization
...Show More Authors

This study involved the treatment of textile wastewater contaminated with direct blue 15 dye (DB15) using a heterogeneous photo-Fenton-like process. Bimetallic iron/copper nanoparticles loaded on bentonite clay were used as heterogeneous catalysts and prepared via liquid-phase reduction method using eucalyptus leaves extract (E-Fe/Cu@BNPs). Characterization methods were applied to resultant particles (NPs), including SEM, BET, and FTIR techniques. The prepared NPs were found with porous and spherical shapes with a specific surface area of particles was 28.589 m2/g. The effect of main parameters on the photo-Fenton-like degradation of DB15 was investigated through batch and continuous fixed-bed systems. In batch mode, pH, H2O2 dosage, DB15 c

... Show More
View Publication
Scopus (10)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Egyptian Journal Of Chemistry
Application of UV-A light Operating Photoreactor for Green Degradation of Direct Blue 15 through the Photo-Fenton-like process: Effects and Box-Behnken Optimization
...Show More Authors

View Publication
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Al-khwarizmi Engineering Journal
The Influence of Support Materials on The Photo-Fenton-like Degradation of Azo Dye Using Continuous Nanoparticles Fixed-bed Column
...Show More Authors

This study used a continuous photo-Fenton-like method to remediate textile effluent containing azo dyes especially direct blue 15 dye (DB15). A Eucalyptus leaf extract was used to create iron/copper nanoparticles supported on bentonite for use as catalysts (E@B-Fe/Cu-NPs). Two fixed-bed configurations were studied and compared. The first one involved mixing granular bentonite with E@B-Fe/Cu-NPs (GB- E@B-Fe/Cu-NPs), and the other examined the mixing of E@B-Fe/Cu-NPs with glass beads (glass beads-E@B-Fe/Cu-NPs) and filled to the fixed-bed column. Scanning electron microscopy (SEM), zeta potential, and atomic forces spectroscopy (AFM) techniques were used to characterize the obtained particles (NPs). The effect of flow rate and DB15 concent

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Environmental Engineering And Science
Fenton-like degradation of direct blue dye using green synthesised Fe/Cu bimetallic nanoparticles
...Show More Authors

This study relates to synthesis of bentonite-supported iron/copper nanoparticles through the biosynthesis method using eucalyptus plant leaf extract, which were then named E-Fe/Cu@B-NPs. The synthesised E-Fe/Cu@B-NPs were examined by a set of experiments involving a heterogeneous Fenton-like process that removed direct blue 15 (DB15) dye from wastewater. The resultant E-Fe/Cu@B-NPs were characterised by scanning electron microscopy, Brunauer–Emmet–Teller analysis, zeta potential analysis, Fourier transform infrared spectroscopy and atomic force microscopy. The operating parameters in batch experiments were optimised using Box–Behnken design. These parameters were pH, hydrogen peroxide (H2O2

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sun Sep 04 2016
Journal Name
Baghdad Science Journal
Degradation of Brilliant Green by Using a bentonite Clay- Based Fe Nano Composite Film as a Heterogeneous Photo- Fenton Catalyst.
...Show More Authors

This paper aims to study the chemical degradation of Brilliant Green in water via photo-Fenton (H2O2/Fe2+/UV) and Fenton (H2O2/Fe2+) reaction. Fe- B nano particles are applied as incrustation in the inner wall surface of reactor. The data form X- Ray diffraction (XRD) analysis that Fe- B nanocomposite catalyst consist mainly of SiO2 (quartz) and Fe2O3 (hematite) crystallites. B.G dye degradation is estimated to discover the catalytic action of Fe- B synthesized surface in the presence of UVC light and hydrogen peroxide. B.G dye solution with 10 ppm primary concentration is reduced by 99.9% under the later parameter 2ml H2O2, pH= 7, temperature =25°C within 10 min. It is clear that pH of the solution affects the photo- catalytic degradation

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
A Green Synthesis of Iron/Copper Nanoparticles as a Catalytic of Fenton-like Reactions for Removal of Orange G Dye
...Show More Authors

This research paper studies the use of an environmentally and not expensive method to degrade Orange G dye (OG) from the aqueous solution, where the extract of ficus leaves has been used to fabricate the green bimetallic iron/copper nanoparticles (G-Fe/Cu-NPs). The fabricated G‑Fe/Cu-NPs were characterized utilizing scanning electron microscopy, BET, atomic force microscopy, energy dispersive spectroscopy, Fourier-transform infrared spectroscopy and zeta potential. The rounded and shaped as like spherical nanoparticles were found for G-Fe/Cu‑NPs with the size ranged 32-59 nm and the surface area was 4.452 m2/g. Then the resultant nanoparticles were utilized as a Fenton-like oxidation catalyst. The degradation efficiency of

... Show More
View Publication Preview PDF
Scopus (16)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Mar 30 2014
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Adsorption of Methyl Green Dye onto Bamboo in Batch and Continuous System
...Show More Authors

Adsorption techniques are widely used to remove certain classes of pollutants from waters, especially those that are not easily biodegradable. Dyes represent one of the problematic groups. The removal of methyl green from waste water using bamboo was studied in batch and continuous system. In batch system equilibrium time and adsorption isotherm was studied at different concentrations (5, 10, 15, 20, 25 and 30 ppm) and 50 mg weight of adsorbent.
Langmuir and Freundlich equations were applied for adsorption isotherm data. Langmiur equation was fitted better than Freundlich equation (R2=0.984 for Langmuir equation).The maximum percentage dye removal obtained 79.4% and adsorption capacity was 15.5 mg/g. For continuous system the breakthr

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 05 2016
Journal Name
Baghdad Science Journal
Removal Color Study of Toluidine Blue dye from Aqueous Solution by using Photo-Fenton Oxidation
...Show More Authors

The degradation of Toluidine Blue dye in aqueous solution under UV irradiation is investigated by using photo-Fenton oxidation (UV/H2O2/Fe+). The effect of initial dye concentration, initial ferrous ion concentration, pH, initial hydrogen peroxide dosage, and irradiation time are studied. It is found put that the removal rate increases as the initial concentration of H2O2 and ferrous ion increase to optimum value ,where in we get more than 99% removal efficiency of dye at pH = 4 when the [H2O2] = 500mg / L, [Fe + 2 = 150mg / L]. Complete degradation was achieved in the relatively short time of 75 minutes. Faster decolonization is achieved at low pH, with the optimal value at pH 4 .The concentrations of degradation dye are detected by spectr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Journal Of Engineering Science And Technology
Applying box-behnken design with statistical optimization for removal vat orange dye from aqueous solution using kaolin
...Show More Authors

Scopus (3)
Scopus
Publication Date
Tue Jun 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Decolorization of Reactive Yellow Dye by Advanced Oxidation Using Continuous Reactors
...Show More Authors

The reactive yellow azo dye (λmax = 420 nm) is widely utilized for textile coloring due to its low-cost stability and tolerance properties. Treatment of dye-containing wastewater by traditional methods is usually inadequate because of its resistance to biological and chemical degradation. From this research, the continuous reactor of an advanced oxidation method supported the use of H2O2/TiO2/UV to remove the coloration of the reactive yellow dye from the discharge. At constant best conditions obtained from the batch reactor tests pH=7, H2O2 dosage = 400 mg/l and TiO2=25mg/l , the aqueous solutions were tested in the continuous reactor at different dye concentration and d

... Show More
View Publication Preview PDF
Crossref (2)
Crossref