Thin films of Nb2O5 have been successfully deposited using the DC reactive magnetron sputtering technique to manufacture NH3 gas sensors. These films have been annealed at a high temperature of 800°C for one hour. The assessment of the Nb2O5 thin films structural, morphological, and electrical characteristics was carried out using several methods such as X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity assessments. The XRD analysis confirms the polycrystalline composition of the Nb2O5 thin films with a hexagonal crystal structure. Furthermore, the sensitivity, response time, and recovery time of the gas sensor were evaluated for the Nb2O5 thin films at different operational temperatures. We have found that the NH3 sensor has its highest sensitivity of 33.3% when manufactured with a power setting of 50 W at room substrate temperature (RT) and an operating temperature of 200°C. It also has a rapid response time of 10 seconds when utilizing a substrate temperature of 150°C. Additionally, the sample prepared with a substrate temperature of 100°C has the quickest recovery time, recorded at 30 seconds
The dielectric constant of most polymers is very low; the addition of TiO2 particles into the polymers provides an attractive and promising way to reach a high dielectric constant. Polymer-based materials with a high dielectric constant show great potential for energy storage applications. Four samples were prepared, one of them was polyurethane (PU) and the other were PU with different weight percent (wt %) of TiO2 (0.1, 0.2, 0.3) powder AFM test was used to distinguish the nanoparticles. The result shows that the most shape of these nanoparticles are spherical and the roughness average is 0.798 nm. The dielectric properties were measured for all samples before and after the exposure to the UV radiation. The result illustrates that the
... Show MoreAdditive aluminum powder to the polystyrene to prepare the composites Polystyrene– Aluminum.The samples were prepared by using mechanical compressed method at low pressure and a temperature 120°C. Measurements of absorbance and reflectance spectra were carried out by UV-Visible spectrophotometer , the effect of additive aluminum on the optical band gap Eop and optical constants ( refractive index n, extinction coefficient k ,dielectric constant ε and optical conductivity σop) were studied for the prepared composites . Results showed a decrease in the Eop with increasing perc
... Show MoreIn cognitive radio system, the spectrum sensing has a major challenge in needing a sensing method, which has a high detection capability with reduced complexity. In this paper, a low-cost hybrid spectrum sensing method with an optimized detection performance based on energy and cyclostationary detectors is proposed. The method is designed such that at high signal-to-noise ratio SNR values, energy detector is used alone to perform the detection. At low SNR values, cyclostationary detector with reduced complexity may be employed to support the accurate detection. The complexity reduction is done in two ways: through reducing the number of sensing samples used in the autocorrelation process in the time domain and through using the Slid
... Show MoreThe study included studying some of the optimum environmental conditions(temperature ,light intensity ) on the production of several green algae Scendesmus quadricauda and Chlorella vulgaris in a selected culture and municipal wastewater . The study also included the recording of growth rate ,doubling time and removal of phosphate and nitrate , maximum rate was recorded to the growth with minimum in doubling time and maximum removal rate of nitrogen-nitrate and phosor- phosphate in each selected culture and municipal wastewater in each species of green algae at 25 C? and a light intensity 380 µ E / m2 / s.
The goal of this investigation is to prepare zinc oxide (ZnO) nano-thin films by pulsed laser deposition (PLD) technique through Q-switching double frequency Nd:YAG laser (532 nm) wavelength, pulse frequency 6 Hz, and 300 mJ energy under vacuum conditions (10-3 torr) at room temperature. (ZnO) nano-thin films were deposited on glass substrates with different thickness of 300, 600 and 900 nm. ZnO films, were then annealed in air at a temperature of 500 °C for one hour. The results were compared with the researchers' previous theoretical study. The XRD analysis of ZnO nano-thin films indicated a hexagonal multi-crystalline wurtzite structure with preferential growth lines (100), (002), (101) for ZnO nano-thin films with different thi
... Show MoreHall effect measurements have been made on a-As2Te3 thin films different thickness film in the range (200-350) nm. The Hall mobility in a-As2Te3 thin films decreases with increasing annealing temperature but the carrier concentration increases. When increasing the film thickness increases the Hall mobility decreases, while the carrier concentration increases.
Mansuriya Gas field is an elongated anticlinal structure aligned from NW to SE, about 25 km long and 5-6 km wide. Jeribe formation is considered the main reservoir where it contains condensate fluid and has a uniform thickness of about 60 m. The reservoir is significantly over-pressured, (TPOC, 2014).
This research is about well logs analysis, which involves the determination of Archie petrophysical parameters, water saturation, porosity, permeability and lithology. The interpretations and cross plots are done using Interactive Petrophysics (IP) V3.5 software.
The rock parameters (a, m and n) values are important in determining the water saturation where (m) can be calcul
... Show MoreIn this study, the ZnTe thin films were deposited on a glass substrate at a thickness of 400nm using vacuum evaporation technique (2×10-5mbar) at RT. Electrical conductivity and Hall effect measurements have been investigated as a function of variation of the doping ratios (3,5,7%) of the Cu element on the thin ZnTe films. The temperature range of (25-200°C) is to record the electrical conductivity values. The results of the films have two types of transport mechanisms of free carriers with two values of activation energy (Ea1, Ea2), expect 3% Cu. The activation energy (Ea1) increased from 29meV to 157meV before and after doping (Cu at 5%) respectively. The results of Hal
... Show More