Computer vision seeks to mimic the human visual system and plays an essential role in artificial intelligence. It is based on different signal reprocessing techniques; therefore, developing efficient techniques becomes essential to achieving fast and reliable processing. Various signal preprocessing operations have been used for computer vision, including smoothing techniques, signal analyzing, resizing, sharpening, and enhancement, to reduce reluctant falsifications, segmentation, and image feature improvement. For example, to reduce the noise in a disturbed signal, smoothing kernels can be effectively used. This is achievedby convolving the distributed signal with smoothing kernels. In addition, orthogonal moments (OMs) are a crucial technique in signal preprocessing, serving as key descriptors for signal analysis and recognition. OMs are obtained by the projection of orthogonal polynomials (OPs) onto the signal domain. However, when dealing with 3D signals, the traditional approach of convolving kernels with the signal and computing OMs beforehand significantly increases the computational cost of computer vision algorithms. To address this issue, this paper develops a novel mathematical model to embed the kernel directly into the OPs functions, seamlessly integrating these two processes into a more efficient and accurate approach. The proposed model allows the computation of OMs for smoothed versions of 3D signals directly, thereby reducing computational overhead. Extensive experiments conducted on 3D objects demonstrate that the proposed method outperforms traditional approaches across various metrics. The average recognition accuracy improves to 83.85% when the polynomial order is increased to 10. Experimental results show that the proposed method exhibits higher accuracy and lower computational costs compared to the benchmark methods in various conditions for a wide range of parameter values.
Background: The isthmus is a difficult area in the root canal complex to manage. The research aimed to evaluate the efficiency of three different obturation techniques (lateral condensation, EandQ (thermoplasticized gutta percha system) and Soft Core (thermoplasticized core carrier gutta percha system)) to obturate the isthmus area of roots prepared by two different instrumentation techniques (rotary ProTaper universal and ProTaper Next systems). Material and method: Sixty freshly extracted teeth were randomly divided into two main groups (A and B) of 30 teeth each. Group A was prepared by rotary ProTaper Universal whereas group B was prepared by ProTaper Next system. Each main group was then randomly subdivided into three subgroups of 10 t
... Show MoreAutomatic license plate recognition (ALPR) used for many applications especially in security applications, including border control. However, more accurate and language-independent techniques are still needed. This work provides a new approach to identifying Arabic license plates in different formats, colors, and even including English characters. Numbers, characters, and layouts with either 1-line or 2-line layouts are presented. For the test, we intend to use Iraqi license plates as there is a wide range of license plate styles written in Arabic, Kurdish, and English/Arabic languages, each different in style and color. This variety makes it difficult for recent traditional license plate recognition systems and algorithms to recogn
... Show MoreAn idiom is a group of words whose meaning put together is different from the meaning of
individual words. English is a rich language when it comes to idioms, they represent variety. For
foreign learners, idioms are problematic because even if they know the meaning of individual
words that compose an idiom the meaning of it might be something completely different.
The present study investigates Iraqi third year college students’ recognition of idioms. To
achieve this, the researchers have conducted a test which comprises three questions. Certain
conclusions are reached here along with some suggestions and recommendations.
There is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into
... Show More