Preferred Language
Articles
/
CRdUJY4BVTCNdQwC2Dvx
Experimental and finite element analysis of mechanical behavior of concrete damaged by Alkali Aggregate Reaction (AAR) and repaired with CFRP Layers
...Show More Authors
Abstract<p>Concrete structures is affected by a deleterious reaction, which is known as Alkali Aggregate Reaction (AAR). AAR can be defined as a chemical reaction between the alkali content in the pore water solution of the cement paste and reactive forms of silica hold in the aggregate. This internal reaction produces expansion and cracking in concrete, which can lead to loss of strength and stiffness. Carbon fiber-reinforced polymer (CFRP) is one of the methods used to suppress further AAR expansion and rehabilitate and support damaged concrete structures. In this research, thirty-six cylindrical specimens were fabricated from non-reactive and reactive concrete, which contained fused silica as 7.5%. In addition, twelve concrete prisms were fabricated from non-reactive and reactive concrete in which three different percentages of fused silica are used, 5%, 7.5% and 10% of the total aggregate. This paper investigates the impact of AAR expansion on the physical and mechanical properties of concrete. It also reports the effective use of one and two CFRP layers on wrapping concrete cylinders. The experimental results show that CFRP is effective in confining damaged concrete by AAR and results in concrete strength enhancement of up to 560%. A comparison of finite element (FE) analysis using ATENA 3D software and the experimental results indicated that FE analysis is capable of modelling the behavior of AAR-damaged concrete repaired with CFRP.</p>
Crossref
View Publication
Publication Date
Sun Feb 02 2025
Journal Name
Engineering, Technology &amp; Applied Science Research
A Numerical Study of Concrete Composite Circular Columns encased with GFRP I-Section using the Finite Element Method
...Show More Authors

This paper presents ABAQUS simulations of fully encased composite columns, aiming to examine the behavior of a composite column system under different load conditions, namely concentric, eccentric with 25 mm eccentricity, and flexural loading. The numerical results are validated with the experimental results obtained for columns subjected to static loads. A new loading condition with a 50 mm eccentricity is simulated to obtain additional data points for constructing the interaction diagram of load-moment curves, in an attempt to investigate the load-moment behavior for a reference column with a steel I-section and a column with a GFRP I-section. The result comparison shows that the experimental data align closely with the simulation

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Nov 28 2018
Journal Name
International Journal Of Engineering & Technology
Finite Element Analysis for The Response of URM Walls Supporting RC Slab
...Show More Authors

The aim for this research is to investigate the effect of inclusion of crack incidence into the 2D numerical model of the masonry units and bonding mortar on the behavior of unreinforced masonry walls supporting a loaded reinforced concrete slab. The finite element method was implemented for the modeling and analysis of unreinforced masonry walls. In this paper, ABAQUS, FE software with implicit solver was used to model and analyze unreinforced masonry walls which are subjected to a vertical load. Detailed Micro Modeling technique was used to model the masonry units, mortar and unit-mortar interface separately. It was found that considering potential pure tensional cracks located vertically in the middle of the mortar and units show

... Show More
Crossref (1)
Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Optics & Laser Technology
Finite element thermal analysis for PMMA/st.st.304 laser direct joining
...Show More Authors

This work is concerned with building a three-dimensional (3D) ab-initio models that is capable of predicting the thermal distribution of laser direct joining processes between Polymethylmethacrylate (PMMA) and stainless steel 304(st.st.304). ANSYS® simulation based on finite element analysis (FEA) was implemented for materials joining in two modes; laser transmission joining (LTJ) and conduction joining (CJ). ANSYS® simulator was used to explore the thermal environment of the joints during joining (heating time) and after joining (cooling time). For both modes, the investigation is carried out when the laser spot is at the middle of the joint width, at 15 mm from the commencement point (joint edge) at traveling time of 3.75 s. Process par

... Show More
View Publication
Scopus (45)
Crossref (43)
Scopus Clarivate Crossref
Publication Date
Fri Jul 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Physical & Mechanical Properties of Chemical Resistance Ceramic Tiles and Mortar to Alkali Solution
...Show More Authors

Chemical resistance ceramic tiles and mortar to alkali solution are prepared and characterized in this study due to the lack of this kind of publications in ceramic literature. Most of the utilized materials are readily available raw materials and the other materials are available commercially. Physical and mechanical properties are measured and indicate that the prepared ceramic tile and mortars are competitive to traditional building materials. Chemical resistance test against alkali solution is also performed by subjecting test specimens to 10%NaOH liquid for two weeks. The results give no indication of chemical attack to specimens of ceramic tile and mortar. The results are discussed and important conclusions are drawn to encourage c

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 11 2017
Journal Name
Journal Of Engineering
Thermo Elastic Analysis of Carbon Nanotube-Reinforced Composite Cylinder Utilizing Finite Element Method with the Theory of Elasticity
...Show More Authors

  

View Publication Preview PDF
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Experimental and Numerical Study on CFRP-Confined Square Concrete Compression Members Subjected to Compressive Loading
...Show More Authors

     Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software. The aim of this research is to study experimentally and numerically, the beha

... Show More
Crossref (3)
Crossref
Publication Date
Mon Mar 23 2020
Journal Name
Journal Of Engineering
Experimental and Numerical Study on CFRP-Confined Square Concrete Compression Members Subjected to Compressive Loading
...Show More Authors

    

Strengthening of the existing structures is an important task that civil engineers continuously face. Compression members, especially columns, being the most important members of any structure, are the most important members to strengthen if the need ever arise. The method of strengthening compression members by direct wrapping by Carbon Fiber Reinforced Polymer (CFRP) was adopted in this research. Since the concrete material is a heterogeneous and complex in behavior, thus, the behavior of the confined compression members subjected to uniaxial stress is investigated by finite element (FE) models created using Abaqus CAE 2017 software.

The aim of this research is to study experime

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Jun 29 2018
Journal Name
Journal Of Engineering
Finite Element Modeling and Parametric Study on Floor Steel Beam Concrete Slab System in Non-Composite Action.
...Show More Authors

This study aims to show, the strength of steel beam-concrete slab system without using shear connectors (known as a non-composite action), where the effect of the friction force between the concrete slab and the steel beam has been investigated, by using finite element simulation.

The proposed finite element model has been verified based on comparison with an experimental work. Then, the model was adopted to study the system strength with a different steel beam and concrete slab profile. ABAQUS has been adopted in the preparation of all numerical models for this study.

After validation of the numerical models, a parametric study was conducted, with linear and non-linear Regression analysis. An equation re

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Sep 10 2020
Journal Name
Diyala Journal Of Engineering Sciences
Finite Element Analysis of Seepage for Hemrin Earth Dam Using Geo-Studio Software
...Show More Authors

Finite Element Approach is employed in this research work to solve the governing differential equations related to seepage via its foundation's dam structure. The primary focus for this reason is the discretization of domain into finite elements through the placement of imaginary nodal points and the discretization of governing equations into an equation system; An equation for each nodal point or part, and unknown variables are solved. The SEEP / W software (program) is a sub-program of the Geo-Studio software, which is used by porous soil media to compensate for the problems of seepage. To achieve the research goals, a study was carried out on Hemrin dam, which located in the Diyala River 100 km northeast of Baghdad, Iraq. Thus, o

... Show More
View Publication
Crossref (8)
Crossref
Publication Date
Mon Dec 20 2021
Journal Name
Baghdad Science Journal
Numerical Analysis of Least-Squares Group Finite Element Method for Coupled Burgers' Problem
...Show More Authors

In this paper, a least squares group finite element method for solving coupled Burgers' problem in   2-D is presented. A fully discrete formulation of least squares finite element method is analyzed, the backward-Euler scheme for the time variable is considered, the discretization with respect to space variable is applied as biquadratic quadrangular elements with nine nodes for each element. The continuity, ellipticity, stability condition and error estimate of least squares group finite element method are proved.  The theoretical results  show that the error estimate of this method is . The numerical results are compared with the exact solution and other available literature when the convection-dominated case to illustrate the effic

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref