Preferred Language
Articles
/
CRcy-Y0BVTCNdQwCVSvO
Improved DDoS Detection Utilizing Deep Neural Networks and Feedforward Neural Networks as Autoencoder
...Show More Authors

Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybrid technique to recognize denial-of-service (DDoS) attacks that combine deep learning and feedforward neural networks as autoencoders. Two datasets were analyzed for the training and testing model, first statically and then iteratively. The auto-encoding model is constructed by stacking the input layer and hidden layer of self-encoding models’ layer by layer, with each self-encoding model using a hidden layer. To evaluate our model, we use a three-part data split (train, test, and validate) rather than the common two-part split (train and test). The resulting proposed model achieved a higher accuracy for the static dataset, where for ISCX-IDS-2012 dataset, accuracy reached a high of 99.35% in training, 99.3% in validation and 99.99% in precision, recall, and F1-score. for the UNSW2018 dataset, the accuracy reached a high of 99.95% in training, 0.99.94% in validation, and 99.99% in precision, recall, and F1-score. In addition, the model achieved great results with a dynamic dataset (using an emulator), reaching a high of 97.68% in accuracy.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Artificial Intelligence For Covid-19
An Efficient Mixture of Deep and Machine Learning Models for COVID-19 and Tuberculosis Detection Using X-Ray Images in Resource Limited Settings
...Show More Authors

View Publication
Scopus (29)
Crossref (25)
Scopus Crossref
Publication Date
Mon Feb 27 2023
Journal Name
Applied Sciences
Comparison of ML/DL Approaches for Detecting DDoS Attacks in SDN
...Show More Authors

Software-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an

... Show More
View Publication
Scopus (42)
Crossref (40)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Performance of concrete thrust block at several burial conditions under the influence of thrust forces generated in the water distribution networks
...Show More Authors
Abstract<p>This study was prepared to investigate the performance and behavior of concrete thrust blocks supporting pipe fittings. In the water distribution networks, it is always necessary to change the path of the pipes at different degrees or to create new branches. In these regions, an unbalanced force called the thrust force is generated. In order to counter this force, these regions are supported with concrete blocks. In this article, the system components (soil, pipe with its bend and thrust blocks) have been numerically modeled and simulated by the ABAQUS CAE/2019 software program in order to study the behavior and stability of the thrust block with different burial conditions (several b</p> ... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Apr 30 2024
Journal Name
International Review Of Electrical Engineering (iree)
Enhancing Efficiency in Distribution Power Networks by Power Factor Controlling of Renewable Energy Generators: a Case Study of Iraqi Wasit Network
...Show More Authors

Integrating Renewable Energy (RE) into Distribution Power Networks (DPNs) is a choice for efficient and sustainable electricity. Controlling the power factor of these sources is one of the techniques employed to manage the power loss of the grid. Capacitor banks have been employed to control phantom power, improving voltage and reducing power losses for several decades. The voltage sag and the significant power losses in the Iraqi DPN make it good evidence to be a case study proving the efficiency enhancement by adjusting the RE power factor. Therefore, this paper studies a part of the Iraqi network in a windy and sunny region, the Badra-Zurbatya-11 kV feeder, in the Wasit governorate. A substation of hybrid RE sources is connected to this

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Sep 01 2006
Journal Name
Journal Of Faculty Of Medicine Baghdad
The Significance Of Maternal Total Serum Homocysteine Level In Iraqi Mothers Who Had Previous Babies With Neural Tube Defects
...Show More Authors

Background: Neural tube defects (NTDs) are said to be inherited in a multifactorial fashion, i.e. genetic-environmental interaction. Maternal nutritional deficiencies had long been reported to cause NTDs, especially folate deficiency during early pregnancy. More attention had been paid to the exact mechanism by which this deficiency state causes these defects in the developing embryo. The most significant of all researches was that connecting reduced folate and increased homocysteine level in maternal serum on one hand and the risk of developing a NTD baby on the other hand. Objectives : to determine the significance of homocysteine level in Iraqi mothers who gave birth to babies with NTDs as compared to normal controls. Patients, Materials

... Show More
Publication Date
Fri Feb 01 2019
Journal Name
Environmental Technology &amp; Innovation
The use of Artificial Neural Network (ANN) for modeling of Cu (II) ion removal from aqueous solution by flotation and sorptive flotation process
...Show More Authors

View Publication
Scopus (32)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Sat Aug 01 2015
Journal Name
2015 37th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Tsallis entropy as a biomarker for detection of Alzheimer's disease
...Show More Authors

View Publication
Scopus (32)
Crossref (20)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
Human recognition by utilizing voice recognition and visual recognition
...Show More Authors

Audio-visual detection and recognition system is thought to become the most promising methods for many applications includes surveillance, speech recognition, eavesdropping devices, intelligence operations, etc. In the recent field of human recognition, the majority of the research be- coming performed presently is focused on the reidentification of various body images taken by several cameras or its focuses on recognized audio-only. However, in some cases these traditional methods can- not be useful when used alone such as in indoor surveillance systems, that are installed close to the ceiling and capture images right from above in a downwards direction and in some cases people don't look straight the cameras or it cannot be added in some

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Ibn Al-haitham Jour. For Pure & Appl. Sci.
Reducing False Notification in Identifying Malicious Application Programming Interface(API) to Detect Malwares Using Artificial Neural Network with Discriminant Analysis
...Show More Authors

Publication Date
Sat Apr 01 2023
Journal Name
Heliyon
A comprehensive review on modelling the adsorption process for heavy metal removal from waste water using artificial neural network technique
...Show More Authors

View Publication Preview PDF
Scopus (44)
Crossref (36)
Scopus Clarivate Crossref