Preferred Language
Articles
/
CRcy-Y0BVTCNdQwCVSvO
Improved DDoS Detection Utilizing Deep Neural Networks and Feedforward Neural Networks as Autoencoder
...Show More Authors

Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybrid technique to recognize denial-of-service (DDoS) attacks that combine deep learning and feedforward neural networks as autoencoders. Two datasets were analyzed for the training and testing model, first statically and then iteratively. The auto-encoding model is constructed by stacking the input layer and hidden layer of self-encoding models’ layer by layer, with each self-encoding model using a hidden layer. To evaluate our model, we use a three-part data split (train, test, and validate) rather than the common two-part split (train and test). The resulting proposed model achieved a higher accuracy for the static dataset, where for ISCX-IDS-2012 dataset, accuracy reached a high of 99.35% in training, 99.3% in validation and 99.99% in precision, recall, and F1-score. for the UNSW2018 dataset, the accuracy reached a high of 99.95% in training, 0.99.94% in validation, and 99.99% in precision, recall, and F1-score. In addition, the model achieved great results with a dynamic dataset (using an emulator), reaching a high of 97.68% in accuracy.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jun 29 2022
Journal Name
Journal Of The College Of Education For Women
The Importance of Utilizing Euphemism in Translation and Simultaneous Interpreting
...Show More Authors

Euphemism is an important linguistic phenomenon that tends to soften written or oral expressions. Thus, when translators or interpreters face expressions including euphemism, they need to know how to deal with them. The problem of the current paper lies in the effect of rendering euphemistic expressions inaccurately, as such expressions represent the cultural and terminological sense of the original language. Thus, rendering them improperly will affect the sense of the interpreted speech. For this, it is essential for translators in general and simultaneous interpreters in particular to know the importance of utilizing euphemism in the simultaneous interpreting field, which is the main aim of this paper. To this end, a systematic review

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Physics: Conference Series
Improved Alternating Direction Implicit Method
...Show More Authors
Abstract<p>The alternating direction implicit method (ADI) is a common classical numerical method that was first introduced to solve the heat equation in two or more spatial dimensions and can also be used to solve parabolic and elliptic partial differential equations as well. In this paper, We introduce an improvement to the alternating direction implicit (ADI) method to get an equivalent scheme to Crank-Nicolson differences scheme in two dimensions with the main feature of ADI method. The new scheme can be solved by similar ADI algorithm with some modifications. A numerical example was provided to support the theoretical results in the research.</p>
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jun 28 2023
Journal Name
The Iraqi Journal Of Veterinary Medicine
Haemoglobin Epsilon as a Biomarker for the Molecular Detection of Canine ‎Lymphoma
...Show More Authors

Lymphoma is a cancer arising from B or T lymphocytes that are central immune system ‎components. It is one of the three most common cancers encountered in the canine; ‎lymphoma affects middle-aged to older dogs and usually stems from lymphatic tissues, ‎such as lymph nodes, lymphoid tissue, or spleen. Despite the advance in the management of ‎canine lymphoma, a better understanding of the subtype and tumor aggressiveness is still ‎crucial for improved clinical diagnosis to differentiate malignancy from hyperplastic ‎conditions and to improve decision-making around treating and what treatment type to use. ‎This study aimed to evaluate a potential novel biomarker related to iron metabolism,

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Dec 04 2011
Journal Name
Baghdad Science Journal
Use of cefoxitin as indicator for detection of Methicillin Resistant Staphylococcus aureus
...Show More Authors

Rapid and accurate identification of Methicillin Resistant Staphylococcus aureus is essential in limiting the spread of this bacterium. The aim of study is the detection of Methicillin Resistant Staphylococcus aureus (MRSA) and determining their susceptibility to some antimicrobial agent. A total of fifty clinical Staphylococcus aureus, isolated from the nose of health work staff in surgery unit of Kalar general hospital and from ear of patients attended to the same hospital. The susceptibilities of isolates were determined by the disc diffusion method with oxacillin (1 ?g) and cefoxitin (30 ?g), and by the mannitol salt agar supplemented with cefoxitin (MSA-CFOX), susceptibilities of isolates to other antimicrobial agent were determined b

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
IMPROVED IMAGE COMPRESSION BASED WAVELET TRANSFORM AND THRESHOLD ENTROPY
...Show More Authors

In this paper, a method is proposed to increase the compression ratio for the color images by
dividing the image into non-overlapping blocks and applying different compression ratio for these
blocks depending on the importance information of the block. In the region that contain important
information the compression ratio is reduced to prevent loss of the information, while in the
smoothness region which has not important information, high compression ratio is used .The
proposed method shows better results when compared with classical methods(wavelet and DCT).

View Publication Preview PDF
Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Measuring the Use of Social Media Networks (SMNs) in Knowledge Sharing, by Using Social Cognitive Theory (SCT) A Study Conducted in Some of Iraqi Universities
...Show More Authors

   SMNs like Facebook, YouTube, Twitter, WhatsApp,..etc. are among the most popular sites on the Internet. These sites can provide a powerful means of sharing, organizing, finding information and knowledge. The popularity of these sites provides an opportunity to measure the use them in knowledge sharing, which needs a special scale, but unfortunately, there is no special scale for that. Thus, this study supposes to use SCT as a scale to measure the use of SMNs in electronic knowledge sharing due to it has been used to measure knowledge sharing with its traditional form. This study can help the decision-makers to use these SMNs to share the academics’ knowledge in educational institutes to the communi

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Jun 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Application of Neural Network in the Identification of the Cumulative Production from AB unit in Main pays Reservoir of South Rumaila Oil Field.
...Show More Authors

A common field development task is the object of the present research by specifying the best location of new horizontal re-entry wells within AB unit of South Rumaila Oil Field. One of the key parameters in the success of a new well is the well location in the reservoir, especially when there are several wells are planned to be drilled from the existing wells. This paper demonstrates an application of neural network with reservoir simulation technique as decision tool. A fully trained predictive artificial feed forward neural network (FFNNW) with efficient selection of horizontal re-entry wells location in AB unit has been carried out with maintaining a reasonable accuracy. Sets of available input data were collected from the exploited g

... Show More
View Publication Preview PDF
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Index for the treated water from WTPs on Al-Karakh side of Baghdad City using Artificial Neural Network (ANN) technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For

... Show More
Publication Date
Mon May 15 2017
Journal Name
Journal Of Theoretical And Applied Information Technology
Anomaly detection in text data that represented as a graph using dbscan algorithm
...Show More Authors

Anomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the

... Show More
Preview PDF
Scopus (4)
Scopus
Publication Date
Sun Mar 01 2015
Journal Name
Baghdad Science Journal
Determination of Serum CA125 and evaluate its efficiency as screening tool For Early Detection of Ovarian Tumors
...Show More Authors

Epithelial ovarian cancer is the leading cause of cancer deaths in women. To date, an effective screening tool for ovarian cancer has not been identified Several clinical and biological factors including serum cancer antigen 125 (CA- 125) have been assessed for prognostic and predictive relevance CA-125 is an epithelial marker derived from coelomic epithelium. It is elevated in 90% of advanced ovarian cancers and in 50% of early ovarian cancers while 20% of ovarian cancers have low or no expression of CA- 125 CA-125 concentrations were measured by Mini Vidas test (VIDAS CA125 II / BIOMERIEUX / France). The median CA-125 levels were significantly higher in the sera of ovarian cancer patients than in those with benign tumors an

... Show More
View Publication Preview PDF
Crossref