The flexible joint robot (FJR) typically experiences parametric variations, nonlinearities, underactuation, noise propagation, and external disturbances which seriously degrade the FJR tracking. This article proposes an adaptive integral sliding mode controller (AISMC) based on a singular perturbation method and two state observers for the FJR to achieve high performance. First, the underactuated FJR is modeled into two simple second-order fast and slow subsystems by using Olfati transformation and singular perturbation method, which handles underactuation while reducing noise amplification. Then, the AISMC is proposed to effectively accomplish the desired tracking performance, in which the integral sliding surface is designed to reduce chattering based on two-state observers with no requirements of the velocity and acceleration measurements in the FJR system. Furthermore, an adaptive laws for switching gains are proposed for both slow and fast subsystems in the FJR to remove the requirements of knowing the up-bound of the disturbances and uncertainties. The closed loop stability of not only slow and fast subsystems but also the overall FJR is proved using the Lyapunov theorem. Finally, the simulation and experimental results demonstrate the superiority of proposed control in terms of less tracking error, significant noise suppression, and strong robustness in comparison with existing controllers.
In this paper, a fixed point theorem of nonexpansive mapping is established to study the existence and sufficient conditions for the controllability of nonlinear fractional control systems in reflexive Banach spaces. The result so obtained have been modified and developed in arbitrary space having Opial’s condition by using fixed point theorem deals with nonexpansive mapping defined on a set has normal structure. An application is provided to show the effectiveness of the obtained result.
Abstract—The upper limb amputation exerts a significant burden on the amputee, limiting their ability to perform everyday activities, and degrading their quality of life. Amputee patients’ quality of life can be improved if they have natural control over their prosthetic hands. Among the biological signals, most commonly used to predict upper limb motor intentions, surface electromyography (sEMG), and axial acceleration sensor signals are essential components of shoulder-level upper limb prosthetic hand control systems. In this work, a pattern recognition system is proposed to create a plan for categorizing high-level upper limb prostheses in seven various types of shoulder girdle motions. Thus, combining seven feature groups, w
... Show MoreCoronary artery disease (CAD) is the leading cause of death worldwide. Certain genetic polymorphisms play an important role in this multifactorial disease, being linked with increased risk of early onset CAD.
To assess six genetic polymorphisms and clinical risk factors in relation to early onset nondiabetic Iraqi Arab CAD patients compared to controls.
This case–contro
Vaginal biopsies and smears were collected from ten adult local healthy goats. Routine histological methods were carried out on vaginal biopsies and then stained with PAS stain. The smears were stained with Methylene blue. All samples were inspected under light microscope. The present study found that many constituents of the wall of the vagina, which have an important functional role, were absent; among these were the vaginal glands, goblet cells, muscularis mucosa, and lymphatic nodules. On the other hand, vagina showed special compensatory histological mechanisms, namely, the deep epithelial folds, the well-developed germinated stratum basale, the apparent basement membrane, and the profuse defensive cells, such as neutrophils, m
... Show MoreA Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton
... Show MoreBackground: Temporomandibular joint disorder (TMD) is a general term that describe a wide variety of conditions that include myogenic pain, internalderangement, arthritic problem, ankylosis of the joint and growth disorders. The aims of study was to evaluate the value of 3 Tesla magnetic resonance imaging in assessment of articular disc position and configuration in patients with temporomandibular joint disorders and to evaluate the correlations of these MRI findings with the clinical signs and symptoms. Materials and methods: A total forty six (30 study and 16 control) participants aged between18 and 49 years, were examined according to Helkimo anamnestic index (questionnaire for anamnesis) and clinical dysfunction index scoring criteria
... Show MoreIn this study, we investigate about the run length properties of cumulative sum (Cusum) and The exponentially weighted moving average (EWMA) control charts, to detect positive shifts in the mean of the process for the poisson distribution with unknown mean. We used markov chain approach to compute the average and the standard deviation for run length for Cusum and EWMA control charts, when the variable under control follows poisson distribution. Also, we used the Cusum and the EWMA control charts for monitoring a process mean when the observations (products are selected from Al_Mamun Factory ) are identically and independently distributed (iid) from poisson distribution i
... Show MoreThis paper presents a minimum delay congestion control in differentiated Service communication networks. The premium and ordinary passage services based fluid flow theory is used to build the suggested structure in high efficient manage. The established system is capable to adeptly manage both the physical network resource limitations and indefinite time delay related to networking system structure.
Abstract
Nowadays, the world adopts a philosophy that relates to environmental conservation. This philosophy can be achieved through providing environmentally friendly products while satisfying customers' needs as well. To attain that, a new systems and programs need to be applied in a scientific manner, and total quality environmental management (TQEM) is among these concepts. The research aimed to analyze the Relationship between (TQEM) Practices and its effect on Flexible Manufacturing in Badush factory. The research sample includes managers and head of divisions at top, middle and front line management levels which were (27) working in Badush factory. To achieve the objectives of the study, the descriptive anal
... Show More