This study aims to test ceramic waste's capacity to remove nickel from aqueous solutions through adsorption. Ceramic wastes were collected from the Refractories Manufacturing Plant in Ramadi. Through a series of lab tests, the reaction time (5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 minutes, and Ni concentrations (20, 40, 60, and 80) were tested using ceramic wastes with a solid to liquid ratio of 2g/30ml. At a temperature of 30ºC, the pH, total dissolved solids (TDS), and electrical conductivity (EC) were all measured. The equilibrium time was set at 30 min. Thereafter, the sorption (%) somewhat increased positively with the Ni concentration. Freundlich's equation showed that the adsorption intensity is 1.1827 and the Freundlich constant is 58.15, Langmuir Equation showed the sorption capacity is 1.8779, and the sorption of Ni fit with the Langmuir and Freundlich equations. It was clarified how ceramic waste material can reduce the Ni concentrations from aqueous solutions protecting the environment.
This study is conducted to verify the efficienecy of local Ninivite rock when used in the treatment of drinking water in plants operating currently in the country in order to develop the situation of these stations to cope with the increase in population. Also, this will limit the pollutian which are increasing in the country's rivers.
(Euphrates and Tigris). These rivers are the sources to feed all water treatment plants in the country. The idea is the develop or the modify these stations by replacing part of top layer of sand filters used in these stations with Ninivite rock to operate as filters composed of two medium. The efficiency of this rock is compared with other materials used successfully worldwide in this area, such a
... Show MoreBackground: The aim of the study was to investigate the effect of surface treatments of zirconia (grinding and sandblast with 50μm, 100 μm) on shear bond strength between zirconia core and veneering ceramic. Material and methods: Twenty-eight presintered Y-TZP ceramic specimens (IPS e.max ZirCAD, Ivoclar vivadent) were fabricated and sintered according to manufacturer’s instructions. The core specimens were divided randomly in to 4 groups, group 1: no surface treatment, group2: zirconia specimens were ground with silicon carbide paper up to1200 grit under water cooling, group3: zirconia specimens were ground and sandblast with 100 μm alumina, group 4: zirconia specimens were ground and sandblast with 50 μm alumina. Surfa
... Show MoreIn this work, a ceramic model has obtained from Iraqi bentonite as a base material with limited additions of alumina and silica. The selected material can bear temperatures higher than the bearing temperature of bentonite as it achieved tolerance temperatures (1300°C) based on X-ray diffraction patterns. It was found that the addition of alumina and silica led to the occurrence of basic phases such as mullite, quartz, cordierite and feldspar in percentages that depended on the percentage of addition in the mixture and the firing temperature, which was (1000-1300)°C.
The current research is concerned with methods of formation and their effect on the sintering process of ceramic materials. The research is divided into a number of chapters. The first chapter addressed the research structure (the research problem, importance, objective, limits, and it also defined the terms used in the research). The second chapter addressed the theoretical framework, where the theoretical framework has been divided into three sections. The first section dealt with methods of formation of ceramic materials including: Plasticizing method 2- semi-dry pressing method 3- dry pressing method 4- extrusion method 5- casting method.
The researcher found that there is a clear difference between the methods through her formati
Cerium oxide CeO2, or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the effect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally,
... Show MoreBackground: Coated archwires have been introduced to improve esthetics during orthodontic treatment. Theaim of the present study was to evaluate and compare the load–deflection characteristics and force levels of six brands of coated nickel titanium orthodontic archwires using palatal and gingival deflection. Materials and methods: Ten round wires (0.016 inch) and ten rectangular wires (0.019x0.025 inch) were obtained from each of six brands (G&H, Opal, Ortho Technology, Dany, Hubit and Astar Companies). The load-deflection properties of these archwires were evaluated by the modified bending test usinga readymade dental arch model in both palatal and gingival directions at 37°C temperature using a universal material testing machi
... Show MoreThis work concerned on nanocrystalline NiAl2O4 and ZnAl2O4 having spinel structure prepared by Sol–gel technique. The structural and characterization properties for the obtained samples were examined using different measurements such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), finally, Field emission scanning electron microscope (FESEM).The Spinel-type for two prepared compound (NiAl2O4) and (ZnAl2O4) at different calcination temperature examined by XRD. Williamson-Hall Methods used to estimate crystallite size, Average distribution crystallite size of two compound were, 34.2 nm for NiAl2O4 and32.6 for ZnAl2O4, the increase in crystallite size affecting by increasing in calcination temperature for both comp
... Show MoreCerium oxide (CeO2), or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the eect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally,
... Show MoreThis work discusses the beginning of fractional calculus and how the Sumudu and Elzaki transforms are applied to fractional derivatives. This approach combines a double Sumudu-Elzaki transform strategy to discover analytic solutions to space-time fractional partial differential equations in Mittag-Leffler functions subject to initial and boundary conditions. Where this method gets closer and closer to the correct answer, and the technique's efficacy is demonstrated using numerical examples performed with Matlab R2015a.
