This study aims to test ceramic waste's capacity to remove nickel from aqueous solutions through adsorption. Ceramic wastes were collected from the Refractories Manufacturing Plant in Ramadi. Through a series of lab tests, the reaction time (5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 minutes, and Ni concentrations (20, 40, 60, and 80) were tested using ceramic wastes with a solid to liquid ratio of 2g/30ml. At a temperature of 30ºC, the pH, total dissolved solids (TDS), and electrical conductivity (EC) were all measured. The equilibrium time was set at 30 min. Thereafter, the sorption (%) somewhat increased positively with the Ni concentration. Freundlich's equation showed that the adsorption intensity is 1.1827 and the Freundlich constant is 58.15, Langmuir Equation showed the sorption capacity is 1.8779, and the sorption of Ni fit with the Langmuir and Freundlich equations. It was clarified how ceramic waste material can reduce the Ni concentrations from aqueous solutions protecting the environment.
The potential application of granules of brick waste (GBW) as a low-cost sorbent for removal of Ni+2ions from aqueous solutions has been studied. The properties of GBW were determined through several tests such as X-Ray diffraction (XRD), Energy dispersive X-ray (EDX), Scanning electron microscopy (SEM), and BET surface area. In batch tests, the influence of several operating parameters including contact time, initial concentration, agitation speed, and the dose of GBW was investigated. The best values of these parameters that provided maximum removal efficiency of nickel (39.4%) were 1.5 hr, 50 mg/L, 250 rpm, and 1.8 g/100mL, respectively. The adsorption data obtained by batch experiments subjected to the Three i
... Show MoreIn this study a new strain of mesophilic Bacillus subtilis AIK, recorded for the first time in Iraq, was used to remove nickel (Ni) from aqueous solutions. The factors that affect bioremediation include temperature, pH value and metal concentrations. The results showed that the highest removal efficiency (R%) was 54, 52 and 48% at 25⁰C and pH of 5, 7 and 9, and with 10 ppm Ni concentration respectively. Whereas the highest R% recorded was 47, 45 and 52% at 30⁰C and of pH 5, 7, and 9 with 1 ppm Ni concentration respectively. On the other hand, the highest R% at 40⁰C was 49, 46, 42 % at pH 5, 7 and 9, with 5, 10 and 10 ppm Ni concentrations respectively. The results also showed that the optimum pH value for Ni removal at bot
... Show MoreThe availability of low- cost adsorbent namely Al-Khriet ( a substance found in the legs of Typha Domingensis) as an agricultural waste material, for the removal of lead and cadmium from aqueous solution was investigated. In the batch tests experimental parameters were studied, including adsorbent dosage between (0.2-1) g, initial metal ions concentration between (50-200) ppm (single and binary) and contact time (1/2-6) h. The removal percentage of each ion onto Al-Khriet reached equilibrium in about 4 hours. The highest adsorption capacity was for lead (96%) while for cadmium it was (90%) with 50 ppm ions concentration, 1 g dosage of adsorbent and pH 5.5. Adsorption capacity in the binary mixture were reduce at about 8% for lead a
... Show MoreThe exploitation of obsolete recyclable resources including paper waste has the advantages of saving resources and environment protection. This study has been conducted to study utilizing paper waste to adsorb phenol which is one of the harmful organic compound byproducts deposited in the environment. The influence of different agitation methods, pH of the solution (3-11), initial phenol concentration (30-120ppm), adsorbent dose (0.5-2.5 g) and contact time (30-150 min) were studied. The highest phenol removal efficiency obtained was 86% with an adsorption capacity of 5.1 mg /g at optimization conditions (pH of 9, initial phenol concentration of 30 mg/L, an adsorbent dose of 2 g and contact time of 120min and at room temperature).
... Show MoreIn this study, the adsorption of Zn (NO3)2 is carried out by using surfaces of malvaparviflora. The validity of the adsorption is evaluated by using atomic absorption Spectrophotometry through determination the amount of adsorbed Zn (NO3)2. Various parameters such as PH, adsorbent weight and contact time are studied in terms of their effect on the reaction progress. Furthermore, Lagergren’s equation is used to determine adsorption kinetics. It is observed that high removal of Zn (NO3)2 is obtained at PH=2. High removal of Zn (NO3)2 is at the time equivalent of 60 min and reaches equilibrium,where 0.25gm is the best weight of adsorbant . For kinetics the reaction onto malvaparviflora follows pseudo first order Lagergren’s equation.
The aim of this study was to use low cost adsorbents, which consist of corn cobs as plant wastes adsorbents in treatment of Industrial waste water by fixed bed column technique and study the effect of two variables (pH value and contact time). The sample of plant waste (Corn cobs) was tested to determine its activity which gives the best performance in heavy metals removal and other pollutants (TSS, TDS and COD). Adsorption tests showed the corn cobs adsorbents had significant heavy metal removal efficiency. The best removal efficiency 95.05% of Cr was occurred at pH 5.4 and 4.18hr. Higher removal efficiency 99.90% of Ni was occurred at pH 6.5 and 2.38hr. While, lower removal efficiency 91.35% for Zn obtained at pH 6.5 and 0.15hr. Remova
... Show MoreThe current study was designed for using banana peels to remove zinc, chromium and nickel from industrial waste-water. Three forms of these peels (fresh, dried small pieces and powder) were tested under some environmental factors such as pH, temperature and contact time. Current data show that banana peels are capable of removing zinc, chromium and nickel ions at significant capacity. Furthermore, the powder of banana peels had highest capability in removing all zinc, chromium and nickel ions followed by fresh peels whilst dried peels had the lowest bioremoving capacity again for all metals under test. The highest capacity was for chromium then nickel and finally zinc. All these data were significantly (LSD peel forms = 2.761 mg/l, LSD m
... Show MoreThe aim of this study was to use low cost adsorbents, which consists of plant wastes in treatment of Industrial waste water by fixed bed column technique and study the effect of to two variables (pH value and contact time) on adsorption process. The sample of plant waste (Rice husk) was tested to determine its activity which gives the best performance in heavy metals removal and other pollutants (TSS, TDS and COD). Adsorption tests showed all tested plant adsorbents had significant heavy metal removal efficiency. The best removal efficiency 96.56% of Cr was occurred at pH 6.5 and 5hrs. Higher removal efficiency 99.02% of Ni was occurred at pH 6.5 and 0.15hr. While, lower removal efficiency 94% for Zn obtained at pH 5 and 2.83hrs. Removal
... Show MoreRoom temperature ionic liquids show potential as an alternative to conventional organic membrane solvents mainly due to their properties of low vapour pressure, low volatility and they are often stable. In the present work, the technical feasibilities of room temperature ionic liquids as bulk liquid membranes for phenol removal were investigated experimentally. In this research several hydrophobic ionic liquids were synthesized at laboratory. These ionic liquids include (1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide[Bmim][NTf2], 1-Hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide[Hmim][NTf2], 1-octyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide[Omim][NTf2],1‐butyl
... Show More