Non-thermal or cold plasma create many reactive species and charged particles when brought into contact with plant extracts. The major constituents involve reactive oxygen species, reactive nitrogen species and plasma ultra-violets. These species can be used to synthesize biologically important nanoparticles. The current study addressed the effect of the green method-based preparation approach on the volumetric analysis of Zn nanoparticles. Under different operating conditions, the traditional thermal method and the microwave method as well as the plasma generation in dielectric barrier discharge reactor were adopted as a preparation approach in this study. The results generally show that the type of method used plays an important role in determining the size of the zinc particles produced. The traditional and microwave method stimulated the formation of clusters and agglomerates of Zn nanoparticles by effect of temperature parameter. As an example, it was noted that the lowest average diameter was obtained at 50 °C, which was 18.77 nm compared with 30.07, 23, 31, and 25.27 nm in diameter for particles generated with other temperatures of 30, 60, 70, and 80 °C respectively. These formations can occur at relatively low temperature at the expense of the formation of irregular particles. However, the weights of pre-prepared Petroselinum crispum seeds, and the ratio of the extract of P. crispum seeds to the salt, are factors that may play an important role in determining the size of the Zn nanoparticles. The current study has also shown that the highest percentage of generated nanoparticles was obtained with the cold plasma method under moderate operating conditions with the advantage of the economic factor. In addition, the Zn nanoparticles synthesized by cold plasma method in 10 min in all concentrations showed more inhibition effect as antifungal against Candida albicans.
In the recent decade, injection of nanoparticles (NPs) into underground formation as liquid nanodispersions has been suggested as a smart alternative for conventional methods in tertiary oil recovery projects from mature oil reservoirs. Such reservoirs, however, are strong candidates for carbon geo-sequestration (CGS) projects, and the presence of nanoparticles (NPs) after nanofluid-flooding can add more complexity to carbon geo-storage projects. Despite studies investigating CO2 injection and nanofluid-flooding for EOR projects, no information was reported about the potential synergistic effects of CO2 and NPs on enhanced oil recovery (EOR) and CGS concerning the interfacial tension (γ) of CO2-oil system. This study thus extensively inves
... Show MoreThe current study was conducted on 504(Ros-308) broiler chicks during the period 28/9/2017-9/11/2018to determine the effect of heat shock in early age and additives such as ginseng in three levels on birds weight and feedconsumption. Results showed that the exposure to high temperature (38-400C) lead to significant decrease (p≤≤≤≤≤0.05 (inaverage body weight at7 day of age and significant decrease in body weight in birds expousured to high temperature inthe periods 2, 4 and 6 hours compared with control (Table 1). Significant decrease in live body weight when exposure to2hr compared with 6hr namely (138.54) and (144.21), respectively while no significant difference between 2 and 4h.Results showed no significant effect in body we
... Show MoreM. domestica is the most important insect that transmit pathogens for diseases in the world. The use of nanotechnology is eco-friendly method in control pests. The study aims to investigate the feasibility of bio-manufacturing nanocapsules of fungal secondary metabolites in order to improve the efficiency of metabolite and assess their inhibitory effect on the acetylcholine esterase enzyme in housefly larvae. An equal mixture of organic solvents, ethyl acetate and dichloromethane, was used to extract the metabolic products of the fungus M. anisopliae, (PEG4000) and chitosan was used in the preparation of nanocapsules. The results of the DLS granular size assay showed that the size of the extract particles and the size of the chitosan and
... Show MoreM. domestica is the most important insect that transmit pathogens for diseases in the world. The use of nanotechnology is eco-friendly method in control pests. The study aims to investigate the feasibility of bio-manufacturing nanocapsules of fungal secondary metabolites in order to improve the efficiency of metabolite and assess their inhibitory effect on the acetylcholine esterase enzyme in housefly larvae. An equal mixture of organic solvents, ethyl acetate and dichloromethane, was used to extract the metabolic products of the fungus M. anisopliae, (PEG4000) and chitosan was used in the preparation of nanocapsules. The results of the DLS granular size assay showed that the size of the extract particles and the size of the chitosa
... Show MoreTaguchi experimental design (TED) is applied to find the optimum effectiveness of aqueous Red Pomegranate Peel (RPP) extract as a green inhibitor for the corrosion of mild steel in 2M H3PO4 solution. The Taguchi methodology has been used to study the effects of changing, temperature, RPP concentration and contact period, at three levels. Weight-loss measurements were designed by construction a L9 orthogonal arrangement of experiments. Results of the efficiencies of inhibition were embraced for the signal to noise proportion & investigation of variance (ANOVA). The results were further processed with a MINITAB-17 software package to find the optimal condition
... Show MoreFormation of Au–Ag–Cu ternary alloy nanoparticles (NPs) is of particular interest because this trimetallic system have miscible (Au–Ag and Au–Cu) and immiscible (Ag– Cu) system. So there is a possibility of phase segregation in this ternary system. At this challenge it was present attempts synthetic technique to generate such trimetallic alloy nanoparticles by exploding wire technique. The importance of preparing nanoparticles alloys in distilled water and in this technique makes the possibility of obtaining nanoparticles free of any additional chemical substance and makes it possible to be used in the treatment of cancer or diseases resulting from bacterial or virus with least toxic. In this work, three metals alloys Au-Ag-Cu
... Show MoreThe study searches for the possibility of using duckweed Lemna spp. to reduce the concentration of heavy metals (zinc and iron) in the wastewater of Baghdad by culturing two different densities of the plant with a fresh weights 5 and 10 g/l and without the plant under optimum uncontrolled conditions. The result showed that there was a significant differences at the possibility level of (p? 0.05) for the three treatments, as the highest percentages for zinc removal in the second day for the plant treatment of 5 g/l were 66.40%, while the highest percentage of iron removal were in the tenth days for the plant treatment 10 g/l were 80 %, and noticed that the increase of the heavy metals concentrations accumulated in the plant after bei
... Show MoreMolasse medium containing different concentrations of (NH4)2 SO4, (NH4)3 PO4, urea, KCI, and P2O5 were compared with the medium used for commercial production of C. utilis in a factory south of Iraq. An efficient medium, which produced 19. 16% dry wt. and 5. 78% protein, was developed. The effect of adding various concentrations of micronutrients (FeSO4, 7T20, MnSO4. 7H20, ZnSO4. 7E20) was also studied. Results showed that FeSo4. 7H20 caused a noticeable increase in both dry wt. and protein content of the yeast.
