Understanding the effects of fear, quadratic fixed effort harvesting, and predator-dependent refuge are essential topics in ecology. Accordingly, a modified Leslie–Gower prey–predator model incorporating these biological factors is mathematically modeled using the Beddington–DeAngelis type of functional response to describe the predation processes. The model’s qualitative features are investigated, including local equilibria stability, permanence, and global stability. Bifurcation analysis is carried out on the temporal model to identify local bifurcations such as transcritical, saddle-node, and Hopf bifurcation. A comprehensive numerical inquiry is carried out using MATLAB to verify the obtained theoretical findings and understand the effects of varying the system’s parameters on their dynamical behavior. It is observed that the existence of these factors makes the system’s dynamic behavior richer, so that it involves bi-stable behavior.
Global warming has a serious impact on the survival of organisms. Very few studies have considered the effect of global warming as a mathematical model. The effect of global warming on the carrying capacity of prey and predators has not been studied before. In this article, an ecological model describing the relationship between prey and predator and the effect of global warming on the carrying capacity of prey was studied. Moreover, the wind speed was considered an influencing factor in the predation process after developing the function that describes it. From a biological perspective, the nonnegativity and uniform bounded of all solutions for the model are proven. The existence of equilibria for the model and its local stability is inves
... Show MoreA harvested prey-predator model with infectious disease in preyis investigated. It is assumed that the predator feeds on the infected prey only according to Holling type-II functional response. The existence, uniqueness and boundedness of the solution of the model are investigated. The local stability analysis of the harvested prey-predator model is carried out. The necessary and sufficient conditions for the persistence of the model are also obtained. Finally, the global dynamics of this model is investigated analytically as well as numerically. It is observed that, the model have different types of dynamical behaviors including chaos.
The cheif aim of the present investigation is to develop Leslie Gower type three species food chain model with prey refuge. The intra-specific competition among the predators is considered in the proposed model. Besides the logistic growth rate for the prey species, Sokol Howell functional response for predation is chosen for our model formulation. The behaviour of the model system thoroughly analyses near the biologically significant equilibria. The linear stability analysis of the equilibria is carried out in order to examine the response of the system. The present model system experiences Hopf bifurcation depending on the choice of suitable model parameters. Extensive numerical simulation reveals the validity of the proposed model.
In the present paper, an eco-epidemiological model consisting of diseased prey consumed by a predator with fear cost, and hunting cooperation property is formulated and studied. It is assumed that the predator doesn’t distinguish between the healthy prey and sick prey and hence it consumed both. The solution’s properties such as existence, uniqueness, positivity, and bounded are discussed. The existence and stability conditions of all possible equilibrium points are studied. The persistence requirements of the proposed system are established. The bifurcation analysis near the non-hyperbolic equilibrium points is investigated. Numerically, some simulations are carried out to validate the main findings and obtain the critical values of th
... Show MoreIn this paper, a Sokol-Howell prey-predator model involving strong Allee effect is proposed and analyzed. The existence, uniqueness, and boundedness are studied. All the five possible equilibria have been are obtained and their local stability conditions are established. Using Sotomayor's theorem, the conditions of local saddle-node and transcritical and pitchfork bifurcation are derived and drawn. Numerical simulations are performed to clarify the analytical results
In this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect
... Show MoreIn this paper, an ecological model with stage-structure in prey population, fear, anti-predator and harvesting are suggested. Lotka-Volterra and Holling type II functional responses have been assumed to describe the feeding processes . The local and global stability of steady points of this model are established. Finally, the global dynamics are studied numerically to investigate the influence of the parameters on the solutions of the system, especially the effect of fear and anti-predation.
The aim of this study is to utilize the behavior of a mathematical model consisting of three-species with Lotka Volterra functional response with incorporating of fear and hunting cooperation factors with both juvenile and adult predators. The existence of equilibrium points of the system was discussed the conditions with variables. The behavior of model referred by local stability in nearness of any an equilibrium point and the conditions for the method of approximating the solution has been studied locally. We define a suitable Lyapunov function that covers every element of the nonlinear system and illustrate that it works. The effect of the death factor was observed in some periods, leading to non-stability. To confirm the theore
... Show More