Preferred Language
Articles
/
BRcd-Y8BVTCNdQwCdYK9
Approximate Solution of Linear and Nonlinear Partial Differential Equations Using Picard’s Iterative Method
...Show More Authors

Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Some Fractional Partial Differential Equations by Invariant Subspace and Double Sumudu Transform Methods
...Show More Authors

      In this paper, several types of space-time fractional partial differential equations has been solved by using most of special double linear integral transform ”double  Sumudu ”. Also, we are going to argue the truth of these solutions by another analytically method “invariant subspace method”. All results are illustrative numerically and graphically.

View Publication Preview PDF
Crossref
Publication Date
Wed May 03 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Designing Feed Forward Neural Network for Solving Linear VolterraIntegro-Differential Equations
...Show More Authors

The aim of this paper, is to design multilayer Feed Forward Neural Network(FFNN)to find the approximate solution of the second order linear Volterraintegro-differential equations with boundary conditions. The designer utilized to reduce the computation of solution, computationally attractive, and the applications are demonstrated through illustrative examples.

View Publication Preview PDF
Publication Date
Thu Jun 01 2017
Journal Name
Chaos, Solitons & Fractals
A semi-analytical iterative method for solving nonlinear thin film flow problems
...Show More Authors

View Publication
Crossref (17)
Crossref
Publication Date
Mon Nov 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Applications
Solution of Riccati matrix differential equation using new approach of variational ‎iteration method
...Show More Authors

To obtain the approximate solution to Riccati matrix differential equations, a new variational iteration approach was ‎proposed, which is suggested to improve the accuracy and increase the convergence rate of the approximate solutons to the ‎exact solution. This technique was found to give very accurate results in a few number of iterations. In this paper, the ‎modified approaches were derived to give modified solutions of proposed and used and the convergence analysis to the exact ‎solution of the derived sequence of approximate solutions is also stated and proved. Two examples were also solved, which ‎shows the reliability and applicability of the proposed approach. ‎

Publication Date
Wed May 13 2020
Journal Name
Nonlinear Engineering
Two meshless methods for solving nonlinear ordinary differential equations in engineering and applied sciences
...Show More Authors
Abstract<p>In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using <italic>Mathematica</italic>® 10. Four applications, which are the well-known nonlinear problems: the magnetohydrodynamic squeezing fluid, the Jeffery-Hamel flow, the straight fin problem and the Falkner-Skan equation are presented and solved using the proposed methods. To ill</p> ... Show More
View Publication
Crossref (10)
Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Computational methods for solving nonlinear ordinary differential equations arising in engineering and applied sciences
...Show More Authors

In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between t

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed May 13 2020
Journal Name
Nonlinear Engineering
Two meshless methods for solving nonlinear ordinary differential equations in engineering and applied sciences
...Show More Authors
Abstract<p>In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using <italic>Mathematica</italic>® 10. Four applications, which are the well-known nonlinear problems: the magnetohydrodynamic squeezing fluid, the Jeffery-Hamel flow, the straight fin problem and the Falkner-Skan equation are presented and solved using the proposed methods. To ill</p> ... Show More
Scopus (14)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Numerical Solution for Classical Optimal Control Problem Governing by Hyperbolic Partial Differential Equation via Galerkin Finite Element-Implicit method with Gradient Projection Method
...Show More Authors

     This paper deals with the numerical solution of the discrete classical optimal control problem (DCOCP) governing by linear hyperbolic boundary value problem (LHBVP). The method which is used here consists of: the GFEIM " the Galerkin finite element method in space variable with the implicit finite difference method in time variable" to find the solution of the discrete state equation (DSE) and the solution of its corresponding discrete adjoint equation, where a discrete classical control (DCC) is given.  The gradient projection method with either the Armijo method (GPARM) or with the optimal method (GPOSM) is used to solve the minimization problem which is obtained from the necessary conditi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 27 2018
Journal Name
Iraqi Journal Of Science
Generalized Spline Method for Integro-Differential Equations of Fractional Order
...Show More Authors

In This paper generalized spline method and Caputo differential operator is applied to solve linear fractional integro-differential equations of the second kind. Comparison of the applied method with exact solutions reveals that the method is tremendously effective.

View Publication Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
Wang-Ball Polynomials for the Numerical Solution of Singular Ordinary Differential Equations
...Show More Authors

This paper presents a new numerical method for the solution of ordinary differential equations (ODE). The linear second-order equations considered herein are solved using operational matrices of Wang-Ball Polynomials. By the improvement of the operational matrix, the singularity of the ODE is removed, hence ensuring that a solution is obtained. In order to show the employability of the method, several problems were considered. The results indicate that the method is suitable to obtain accurate solutions.

View Publication Preview PDF
Scopus (4)
Scopus Crossref