Orthogonal polynomials and their moments serve as pivotal elements across various fields. Discrete Krawtchouk polynomials (DKraPs) are considered a versatile family of orthogonal polynomials and are widely used in different fields such as probability theory, signal processing, digital communications, and image processing. Various recurrence algorithms have been proposed so far to address the challenge of numerical instability for large values of orders and signal sizes. The computation of DKraP coefficients was typically computed using sequential algorithms, which are computationally extensive for large order values and polynomial sizes. To this end, this paper introduces a computationally efficient solution that utilizes the parall
... Show MoreAim: This abstract aims to highlight the critical nature of climate change as a pressing challenge facing humanity in the 21st century. It underscores the severe consequences it poses to essential facets of human existence, including water and energy resources, agricultural production, and the broader environmental systems. Method: The abstract primarily utilizes a descriptive approach to emphasize the impact of climate change on the Middle East, particularly the Arab region. It relies on a review of existing knowledge and data related to climate change and its effects on ecosystems and drought patterns. Results: The abstract outlines the direct and indirect repercussions of climate change on human life and the environment. It draws atten
... Show MoreGeneral Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show MoreThe problem of frequency estimation of a single sinusoid observed in colored noise is addressed. Our estimator is based on the operation of the sinusoidal digital phase-locked loop (SDPLL) which carries the frequency information in its phase error after the noisy sinusoid has been acquired by the SDPLL. We show by computer simulations that this frequency estimator beats the Cramer-Rao bound (CRB) on the frequency error variance for moderate and high SNRs when the colored noise has a general low-pass filtered (LPF) characteristic, thereby outperforming, in terms of frequency error variance, several existing techniques some of which are, in addition, computationally demanding. Moreover, the present approach generalizes on existing work tha
... Show MoreAnti-Neutrophil Cytoplasmic Antibodies (ANCA) are a heterogeneous group of autoantibodies with a broad spectrum of clinically associated diseases. The diagnostic value is established for Proteinase 3 (PR3)-ANCA as well as Myeloperoxidase (MPO)-ANCA. To estimate the frequency of anti-neutrophile cytoplasmic antibodies (ANCA) in sera from a group of Iraqi patients with some autoimmune diseases compared with a healthy control group. Serum samples were collected from one hundred patient, 47 males and 53 females; with age range of 16-70 years; 20 specimens from patients with systemic lupus erythematosus (SLE), 30 from patients with ulcerative colitis (UC), and 50 from patients with rheumatoid arthritis (RA). A group of 40 apparently healthy b
... Show More