One of the most popular and legally recognized behavioral biometrics is the individual's signature, which is used for verification and identification in many different industries, including business, law, and finance. The purpose of the signature verification method is to distinguish genuine from forged signatures, a task complicated by cultural and personal variances. Analysis, comparison, and evaluation of handwriting features are performed in forensic handwriting analysis to establish whether or not the writing was produced by a known writer. In contrast to other languages, Arabic makes use of diacritics, ligatures, and overlaps that are unique to it. Due to the absence of dynamic information in the writing of Arabic signatures, it will be more difficult to attain greater verification accuracy. On the other hand, the characteristics of Arabic signatures are not very clear and are subject to a great deal of variation (features’ uncertainty). To address this issue, the suggested work offers a novel method of verifying offline Arabic signatures that employs two layers of verification, as opposed to the one level employed by prior attempts or the many classifiers based on statistical learning theory. A static set of signature features is used for layer one verification. The output of a neutrosophic logic module is used for layer two verification, with the accuracy depending on the signature characteristics used in the training dataset and on three membership functions that are unique to each signer based on the degree of truthiness, indeterminacy, and falsity of the signature features. The three memberships of the neutrosophic set are more expressive for decision-making than those of the fuzzy sets. The purpose of the developed model is to account for several kinds of uncertainty in describing Arabic signatures, including ambiguity, inconsistency, redundancy, and incompleteness. The experimental results show that the verification system works as intended and can successfully reduce the FAR and FRR.
As they include both nucleophilic and electrophilic moieties on the same skeleton, enaminones are an important subclass of chemical compounds that contain conjugated NC=CC=O fragments. These active sites aid in the production of organic molecules containing linear or cyclic heteroatoms. Enaminones and the chemica1 compounds produced from them are both biologically active against the most dangerous bacteria. As a result, they have been utilized as starting materials for the synthesis of anti-inf1ammatory, antibacteria1, anticonvulsant, anticancer, anti-urease, anti-malaria1, optically luminescent, corrosion inhibition, and antitumor agents. Their synthesis has usually a terrific deal of interest and a plethora of synthetic paths have been na
... Show MoreAlizarin is one of the popularly used and wide separated compounds with a chemical name (1,2- dihydroxy-9,10-anthraquinone) which belong to the anthraquinones family that contain three aromatic conjugated rings and in the central rings it contains two ketonic groups.1
Mannich base is a versatile compound that can be easily modified to introduce different functional groups, allowing for the creation diverse selection of items with varying features. Additionally, the Mannich reaction is a valuable tool in organic synthesis, due to the fact it provides an effortless and efficient approach for synthesizing C-N bonds. Overall, The Mannich base and even its derivatives are essential in many aspects of chemistry and its complexes are in the pharmaceutical industry. Studies have revealed that it shows good anti-cancer, anti-mycobacterial, remarkable anti-HIV, anti-tubercular, anti-convulsant, anti-fungal, antiviral, antitumor, cytotoxic activities and in industrial applications such as in the creation of polymer
... Show MoreRare earth metal oxides (REMOs) have gained considerable attention in recent years owing to their distinctive properties and potential applications in electronic devices and catalysts. Particularly, cerium dioxide (CeO2), also known as ceria, has emerged as an interesting material in a wide variety of industrial, technological, and medical applications. Ceria can be synthesized with various morphologies, including rods, cubes, wires, tubes, and spheres. This comprehensive review offers valuable perceptions into the crystal structure, fundamental properties, and reaction mechanisms that govern the well-established surface-assisted reactions over ceria. The activity, selectivity, and stability of ceria, either as a stand-alone catalyst or as
... Show MoreRare earth metal oxides (REMOs) have gained considerable attention in recent years owing to their distinctive properties and potential applications in electronic devices and catalysts. Particularly, cerium dioxide (CeO2), also known as ceria, has emerged as an interesting material in a wide variety of industrial, technological, and medical applications. Ceria can be synthesized with various morphologies, including rods, cubes, wires, tubes, and spheres. This comprehensive review offers valuable perceptions into the crystal structure, fundamental properties, and reaction mechanisms that govern the well-established surface-assisted reactions over ceria. The activity, selectivity, and stability of ceria, either as a stand-alone catalyst or as
... Show MoreThis study investigates the potential of biogas recovery from used engine oil (UEO) by co-digestion with animals’ manure, including cow dung (CD), poultry manure (PM), and cattle manure (CM). The experimental work was carried out in anaerobic biodigesters at mesophilic conditions (37°C). Two groups of biodigesters were prepared. Each group consisted of 4 digesters. UEO was the main component in the first group of biodigesters with and without inoculum, whereby a mix of UEO and petroleum refinery oily sludge (ROS) was the component in the second group of biodigesters. The results revealed that for UEO-based biodigesters, maximum biogas production was 0.98, 1.23, 1.93, and 0 ml/g VS from UEO±CD, UEO±CM, UEO±PM, and U
... Show MoreIn this study, structures damage identification method based on changes in the dynamic characteristics
(frequencies) of the structure are examined, stiffness as well as mass matrices of the curved
(in and out-of-plane vibration) beam elements is formulated using Hamilton's principle. Each node
of both of them possesses seven degrees of freedom including the warping degree of freedom. The
curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory
in 1994. A computer program was developing to carry out free vibration analyses of the curved
beam as well as straight beam. Comparing with the frequencies for other researchers using the general
purpose program MATLAB. Fuzzy logic syste
In this research, a low cost, portable, disposable, environment friendly and an easy to use lab-on-paper platform sensor was made. The sensor was constructed using a mixture of Rhodamine-6G and gold nanoparticles also Sodium chloride salt. Drop–casting method was utilized as a technique to make a platform which is a commercial office paper. A substrate was characterized using Field Emission Scanning Electron Microscope, Fourier transform infrared spectroscopy, UV-visible spectrophotometer and Raman Spectrometer. Rh-6G Raman signal was enhanced based on Surface Enhanced Raman Spectroscopy technique utilized gold nanoparticles. High Enhancement factor of Plasmonic commercial office paper reaches up to 0.9 x105 because of local surface pl
... Show MoreAchieving reliable operation under the influence of deep-submicrometer noise sources including crosstalk noise at low voltage operation is a major challenge for network on chip links. In this paper, we propose a coding scheme that simultaneously addresses crosstalk effects on signal delay and detects up to seven random errors through wire duplication and simple parity checks calculated over the rows and columns of the two-dimensional data. This high error detection capability enables the reduction of operating voltage on the wire leading to energy saving. The results show that the proposed scheme reduces the energy consumption up to 53% as compared to other schemes at iso-reliability performance despite the increase in the overhead number o
... Show More