Preferred Language
Articles
/
AhcoPo8BVTCNdQwCQmU1
RETRIEVING DOCUMENT WITH COMPACT GENETIC ALGORITHM(CGA)

Preview PDF
Quick Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Publication Date
Thu Mar 01 2018
Journal Name
Journal Of Engineering
Flexible Genetic Algorithm Based Optimal Power Flow of Power Systems

Nowadays, the power plant is changing the power industry from a centralized and vertically integrated form into regional, competitive and functionally separate units. This is done with the future aims of increasing efficiency by better management and better employment of existing equipment and lower price of electricity to all types of customers while retaining a reliable system. This research is aimed to solve the optimal power flow (OPF) problem. The OPF is used to minimize the total generations fuel cost function. Optimal power flow may be single objective or multi objective function. In this thesis, an attempt is made to minimize the objective function with keeping the voltages magnitudes of all load buses, real outp

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed May 31 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Retrieving Image from Noisy Version depending on Multiwavelet Soft-Thresholding with Smoothing Filter

In this paper, we describe a new method for image denoising. We analyze properties of the Multiwavelet coefficients of natural images. Also it suggests a method for computing the Multiwavelet transform using the 1st order approximation. This paper describes a simple and effective model for noise removal through suggesting a new technique for retrieving the image by allowing us to estimate it from the noisy image. The proposed algorithm depends on mixing both soft-thresholds with Mean filter and applying concurrently on noisy image by dividing into blocks of equal size (for concurrent processed to increase the performance of the enhancement process and to decease the time that is needed for implementation by applying the proposed algorith

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 01 2008
Journal Name
2008 First International Conference On The Applications Of Digital Information And Web Technologies (icadiwt)
Hybrid canonical genetic algorithm and steepest descent algorithm for optimizing likelihood estimators of ARMA (1, 1) model

This paper presents a hybrid genetic algorithm (hGA) for optimizing the maximum likelihood function ln(L(phi(1),theta(1)))of the mixed model ARMA(1,1). The presented hybrid genetic algorithm (hGA) couples two processes: the canonical genetic algorithm (cGA) composed of three main steps: selection, local recombination and mutation, with the local search algorithm represent by steepest descent algorithm (sDA) which is defined by three basic parameters: frequency, probability, and number of local search iterations. The experimental design is based on simulating the cGA, hGA, and sDA algorithms with different values of model parameters, and sample size(n). The study contains comparison among these algorithms depending on MSE value. One can conc

... Show More
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Sun May 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Facial Emotion Images Recognition Based On Binarized Genetic Algorithm-Random Forest

Most recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Or

... Show More
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Effect of Genetic Algorithm as a Feature Selection for Image Classification

     Analysis of image content is important in the classification of images, identification, retrieval, and recognition processes. The medical image datasets for content-based medical image retrieval (  are large datasets that are limited by high computational costs and poor performance. The aim of the proposed method is to enhance this image retrieval and classification by using a genetic algorithm (GA) to choose the reduced features and dimensionality. This process was created in three stages. In the first stage, two algorithms are applied to extract the important features; the first algorithm is the Contrast Enhancement method and the second is a Discrete Cosine Transform algorithm. In the next stage, we used datasets of the medi

... Show More
Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun May 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On-Line Navigational Problem of a Mobile Robot Using Genetic Algorithm

  Manufacturing systems of the future foresee the use of intelligent vehicles, optimizing and navigating. The navigational problem is an important and challenging problem in the field of robotics. The robots often find themselves in a situation where they must find a trajectory to another position in their environment, subject to constraints posed by obstacles and the capabilities of the robot itself. On-line navigation is a set of algorithms that plans and executes a trajectory at the same time.         The system adopted in this research searches for a robot collision-free trajectory in a dynamic environment in which obstacles can move while the robot was moving toward the target. So, the ro

... Show More
View Publication Preview PDF
Publication Date
Wed Apr 10 2019
Journal Name
Engineering, Technology & Applied Science Research
Content Based Image Clustering Technique Using Statistical Features and Genetic Algorithm

Text based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.

... Show More
Scopus (5)
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Mon Dec 06 2021
Journal Name
Iraqi Journal Of Science
TOPSIS with Multiple Linear Regression for Multi-Document Text Summarization

The huge amount of information in the internet makes rapid need of text
summarization. Text summarization is the process of selecting important sentences
from documents with keeping the main idea of the original documents. This paper
proposes a method depends on Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS). The first step in our model is based on extracting seven
features for each sentence in the documents set. Multiple Linear Regression (MLR)
is then used to assign a weight for the selected features. Then TOPSIS method
applied to rank the sentences. The sentences with high scores will be selected to be
included in the generated summary. The proposed model is evaluated using dataset

... Show More
View Publication Preview PDF