Nanocrystalline TiO 2 and CuO doped TiO 2 thin films were successfully deposited on suitably cleaned glass substrate at constant room temperature and different concentrations of CuO (0.05,0.1,0.15,0.2) wt% using pulse laser deposition(PLD) technique at a constant deposition parameter such as : (pulse Nd:YAG laser with λ=1064 nm, constant energy 800 mJ, with repetition rate 6 Hz and No. of pulse (500). The films were annealed at different annealing temperatures 423K and 523 K. The effect of annealing on the morphological and electrical properties was studied. Surface morphology of the thin films has been studied by using atomic force microscopes which showed that the films have good crystalline and homogeneous surface. The Root Mean Square value of thin films surface roughness is increased with the increase of annealing temperature. Also, the grain size increases with the increasing of CuO concentration and annealing. The temperatures dependence of the electrical conductivity and the activation energy at temperature ranging from (293-473) K of the as-deposited and films annealed at different annealing temperatures have been studied. The results show that as the film concentration of and conductivity increases, while the activation energy (Ea 1 , E a2 ) decreases. Both, the annealing and composition effects on Hall constant, charge carrier concentration, Hall mobility were investigated. Hall Effect measurements show that all films have n- type charge carriers, and the concentration and annealing increase carriers concentration while the mobility decreases.
In this research, the electrical characteristics of glow discharge plasma were studied. Glow discharge plasma generated in a home-made DC magnetron sputtering system, and a DC-power supply of high voltage as input to the discharge electrodes were both utilized. The distance between two electrodes is 4cm. The gas used to produce plasma is argon gas which flows inside the chamber at a rate of 40 sccm. The influence of work function for different target materials (gold, copper, and silver), - 5cm in diameter and around 1mm thickness - different working pressures, and different applied voltages on electrical characteristics (discharge current, discharge potential, and Paschen’s curve) were studied. The results showed that the discharge cur
... Show MorePorous silicon (PS) layers were formed on n-type silicon (Si) wafers using Photo- electrochemical Etching technique (PEC) was used to produce porous silicon for n-type with orientation of (111). The effects of current density were investigated at: (10, 20, 30, 40, and50) mA/cm2 with etching time: 10min. X-ray diffraction studies showed distinct variations between the fresh silicon surface and the synthesized porous silicon. The maximum crystal size of Porous Silicon is (33.9nm) and minimum is (2.6nm) The Atomic force microscopy (AFM) analysis and Field Emission Scanning Electron Microscope (FESEM) were used to study the morphology of porous silicon layer. AFM results showed that root mean square (RMS) of roughness and the grain size of p
... Show MoreThe physical, the thermal and the mechanical properties of Nano-composites, that consisted of Polyprime EP epoxy that reinforced by multi-walled carbon nanotubes (MWCNTs), have been studied. Various loading ratios, 0.1, 0.5, and 1 wt. %of MWCNT shave been infused into epoxy by a magnetic stirrer and then the hardener mixed with the mthat supplied with the epoxy. All sample shave been cutting using CNC machine. Tensile test, three-point bending, hardness tests, lee's disk, differential scanning calorimetry, water absorption and dielectric and electrical conductivity test were utilized on unfilled, MWCNT-filled epoxy to identify the loading effect on the properties of materials. Scanning electron microscopy (SEM) was used to determine the
... Show MoreA numerical investigation has been performed to examine the effect of fluorine concentration on the chain reaction mechanisms and parameters of hydrogen fluoride (HF) chemical laser. The practical difficulties associated with this type of lasers impose that an alternative route might be quite useful. Thus, particular attention was paid to develop a computer program to investigate various processes. The results of this computer simulation program proved their credibility when compared with the little published data. This computer program is called Reaction Rate Simulation Model (RRSM). An entirely new approach to emulate the reaction mechanisms has been followed. The effectiveness of reaction rates in the processes of HF lase
... Show MoreThe wide use of pesticides in recent years leads to rapid distribution of these pollutants in the environment (air, water and soil).They were transported by means of air or water to biological ecosystems. They become more toxic through the processes of biological magnification while some of them persist for along period.The aim of this work is to show the negative effect that chemical pesticides causes, and in the same to show their side effect on the environment and health in Iraq. We could conclude that the bad use of these chemicals could cause an urgent impact now or in the future. Governmental offices dealing with these materials should take the right measures to minimize the danger and the misuse of these chemicals by seeking alternat
... Show MoreIn this work a hybrid composite materials were prepared containing matrix of polymer (polyethylene PE) reinforced by different reinforcing materials (Alumina powder + Carbon black powder CB + Silica powder). The hybrid composite materials prepared are: • H1 = PE + Al2O3 + CB • H2 = PE + CB + SiO2 • H3 = PE + Al2O3 + CB + SiO2 All samples related to electrical tests were prepared by injection molding process. Mechanical tests include compression with different temperatures and different chemical solutions at different immersion times The mechanical experimentations results were in favour of the samples (H3) with an obvious weakness of the samples (H1) and a decrease of these properties with a rise in temperature and the increasing
... Show MoreThe compounding of polyvinyl chloride (PVC) with two types of fillers and some additives were studied for the manufacturing of acid resistant tile. Various concentrations of two types of fillers namely; calcium carbonate and recycled glass powder were used along with different additives generally categorized as plasticizers, stabilizers, and lubricants were mixed in the standard concentration unit parts per hundred resins (phr) with the PVC as base polymer. The effects of filler materials on acid resistant towered different acids like sulphuric, nitric and hydrochloric at different concentration were studied. Samples which passed the test were further checked for dielectric strength and mechanical properties. It was found that the recycl
... Show More