Orthogonal polynomials and their moments serve as pivotal elements across various fields. Discrete Krawtchouk polynomials (DKraPs) are considered a versatile family of orthogonal polynomials and are widely used in different fields such as probability theory, signal processing, digital communications, and image processing. Various recurrence algorithms have been proposed so far to address the challenge of numerical instability for large values of orders and signal sizes. The computation of DKraP coefficients was typically computed using sequential algorithms, which are computationally extensive for large order values and polynomial sizes. To this end, this paper introduces a computationally efficient solution that utilizes the parallel processing capabilities of modern central processing units (CPUs), namely the availability of multiple cores and multithreading. The proposed multi-threaded implementations for computing DKraP coefficients divide the computations into multiple independent tasks, which are executed concurrently by different threads distributed among the independent cores. This multi-threaded approach has been evaluated across a range of DKraP sizes and various values of polynomial parameters. The results show that the proposed method achieves a significant reduction in computation time. In addition, the proposed method has the added benefit of applying to larger polynomial sizes and a wider range of Krawtchouk polynomial parameters. Furthermore, an accurate and appropriate selection scheme of the recurrence algorithm is introduced. The proposed approach introduced in this paper makes the DKraP coefficient computation an attractive solution for a variety of applications.
In this paper, the dynamic behaviour of the stage-structure prey-predator fractional-order derivative system is considered and discussed. In this model, the Crowley–Martin functional response describes the interaction between mature preys with a predator. e existence, uniqueness, non-negativity, and the boundedness of solutions are proved. All possible equilibrium points of this system are investigated. e sucient conditions of local stability of equilibrium points for the considered system are determined. Finally, numerical simulation results are carried out to conrm the theoretical results.
The article describes a certain computation method of -arcs to construct the number of distinct -arcs in for . In this method, a new approach employed to compute the number of -arcs and the number of distinct arcs respectively. This approach is based on choosing the number of inequivalent classes } of -secant distributions that is the number of 4-secant, 3-secant, 2-secant, 1-secant and 0-secant in each process. The maximum size of -arc that has been constructed by this method is . The new method is a new tool to deal with the programming difficulties that sometimes may lead to programming problems represented by the increasing number of arcs. It is essential to reduce the established number of -arcs in each cons
... Show MoreIn this paper, third order non-polynomial spline function is used to solve 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of this method, and to compare the computed results with other known methods.
In this paper, compared eight methods for generating the initial value and the impact of these methods to estimate the parameter of a autoregressive model, as was the use of three of the most popular methods to estimate the model and the most commonly used by researchers MLL method, Barg method and the least squares method and that using the method of simulation model first order autoregressive through the design of a number of simulation experiments and the different sizes of the samples.
In this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect
... Show MoreThe flexible joint robot manipulators provide various benefits, but also present many control challenges such as nonlinearities, strong coupling, vibration, etc. This paper proposes optimal second order integral sliding mode control (OSOISMC) for a single link flexible joint manipulator to achieve robust and smooth performance. Firstly, the integral sliding mode control is designed, which consists of a linear quadratic regulator (LQR) as a nominal control, and switching control. This control guarantees the system robustness for the entire process. Then, a nonsingularterminal sliding surface is added to give a second order integral sliding mode control (SOISMC), which reduces chartering effect and gives the finite time convergence as well. S
... Show MoreBlockchain represents a new promising technology with a huge economic impact resulting from its uses in various fields such as digital currency and banking; malware represents a serious threat to users, and there are many differences in the effectiveness of antivirus software used to deal with the problem of malware. This chapter has developed a coefficient for measuring the effectiveness of antivirus software. This chapter evaluates the effectiveness of antivirus software by conducting tests on a group of protection programs using a folder containing an amount of data. These programs are applied to combat viruses contained in this folder. The study revealed that the effectiveness of antivirus software is as follows: AVG scored 0%,
... Show More