Preferred Language
Articles
/
9hdcWZIBVTCNdQwC6azZ
Efficient Intrusion Detection Through the Fusion of AI Algorithms and Feature Selection Methods
...Show More Authors

With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusion Detection System (IDS). Success is measured by a variety of metrics, including accuracy, precision, recall, F1-Score, and execution time. Applying feature selection approaches such as Analysis of Variance (ANOVA), Mutual Information (MI), and Chi-Square (Ch-2) reduced execution time, increased detection efficiency and accuracy, and boosted overall performance. All classifiers achieve the greatest performance with 99.99% accuracy and the shortest computation time of 0.0089 seconds while using ANOVA with 10% of features.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
"Compared some of the semi-parametric methods in analysis of single index model "
...Show More Authors

As the process of  estimate for model and variable selection significant is a crucial process in the semi-parametric modeling At the beginning of the modeling process often At there are many explanatory variables to Avoid the loss of any explanatory elements may be important as a result , the selection of significant variables become necessary , so the process of variable selection is not intended to simplifying  model complexity explanation , and also predicting. In this research was to use some of the semi-parametric methods (LASSO-MAVE , MAVE and The proposal method (Adaptive LASSO-MAVE) for variable selection and estimate semi-parametric single index model (SSIM) at the same time .

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Analysis of Robust Principal Components Depends on the some methods of Projection-Pursuit
...Show More Authors

The analysis of the classic principal components are sensitive to the outliers where they are calculated from the characteristic values and characteristic vectors of correlation matrix or variance Non-Robust, which yields an incorrect results in the case of these data contains the outliers values. In order to treat this problem, we resort to use the robust methods where there are many robust methods Will be touched to some of them.

   The robust measurement estimators include the measurement of direct robust estimators for characteristic values by using characteristic vectors without relying on robust estimators for the   variance and covariance matrices. Also the analysis of the princ

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 11 2023
Journal Name
Mathematical Problems In Engineering
Bayesian Methods for Estimation the Parameters of Finite Mixture of Inverse Rayleigh Distribution
...Show More Authors

Methods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of estimations methods of the entropy function to the random coefficients for two models: the general regression and swamy of the panel data
...Show More Authors

In this study, we focused on the random coefficient estimation of the general regression and Swamy models of panel data. By using this type of data, the data give a better chance of obtaining a better method and better indicators. Entropy's methods have been used to estimate random coefficients for the general regression and Swamy of the panel data which were presented in two ways: the first represents the maximum dual Entropy and the second is general maximum Entropy in which a comparison between them have been done by using simulation to choose the optimal methods.

The results have been compared by using mean squares error and mean absolute percentage error to different cases in term of correlation valu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Iraqi Journal Of Science
Detection and Discrimination for Shadow of High Resolution Satellite Images by Spatial Filter
...Show More Authors

This paper presents a new and effective procedure to extract shadow regions of high- resolution color images. The method applies this process on modulation the equations of the band space a component of the C1-C2-C3 which represent RGB color, to discrimination the region of shadow, by using the detection equations in two ways, the first by applying Laplace filter, the second by using a Kernel Laplace filter, as well as make comparing the two results for these ways with each other's. The proposed method has been successfully tested on many images Google Earth Ikonos and Quickbird images acquired under different lighting conditions and covering both urban, roads. Experimental results show that this algorithm which is simple and effective t

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Detection and interpretation of clouds types using visible and infrared satellite images
...Show More Authors

One of the most Interesting natural phenomena is clouds that have a very strong effect on the climate, weather and the earth's energy balance. Also clouds consider the key regulator for the average temperature of the plant. In this research monitoring and studying the cloud cover to know the clouds types and whether they are rainy or not rainy using visible and infrared satellite images. In order to interpret and know the types of the clouds visually without using any techniques, by comparing between the brightness and the shape of clouds in the same area for both the visible and infrared satellite images, where the differences in the contrasts of visible image are the albedo differences, while in the infrared images is the temperature d

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Studying the Connection Between Partical Size and Lattice Distortions Through X - Ray Diffraction Line Profile Analysis for CaO Powder
...Show More Authors

The integral  breadth  method  has been utilized to analyse line

proIiles broadening and lattice strain of CaO at different temperatures

The effect of tcmperattre on crystallite size and strain has also been investigated  . The crystall i tes are found to be highly anisotropic even at high temperatures

View Publication
Publication Date
Thu Aug 01 2024
Journal Name
Fuel
Experimental influence assessments of water drive and gas breakthrough through the CO2-assisted gravity drainage process in reservoirs with strong aquifers
...Show More Authors

Mature oil reservoirs surrounded with strong edge and bottom water drive aquifers experience pressure depletion and water coning/cresting. This laboratory research investigated the effects of bottom water drive and gas breakthrough on immiscible CO2-Assisted Gravity Drainage (CO2-AGD), focusing on substantial bottom water drive. The CO2-AGD method vertically separates the injected CO2 to formulate a gas cap and Oil. Visual experimental evaluation of CO2-AGD process performance was performed using a Hele-Shaw model. Water-wet sand was used for the experiments. The gas used for injection was pure CO2, and the “oleic” phase was n-decane with a negative spreading coefficient. The aqueous phase was deionized water. To evaluate the feasibilit

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Sep 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
The use of the methods of the lower squares and the smaller squares weighted in the estimation of the parameters and design of the sample acceptance schemesFor general exponential distribution
...Show More Authors

The acceptance sampling plans for generalized exponential distribution, when life time experiment is truncated at a pre-determined time are provided in this article. The two parameters (α, λ), (Scale parameters and Shape parameters) are estimated by LSE, WLSE and the Best Estimator’s for various samples sizes are used to find the ratio of true mean time to a pre-determined, and are used to find the smallest possible sample size required to ensure the producer’s risks, with a pre-fixed probability (1 - P*). The result of estimations and of sampling plans is provided in tables.

Key words: Generalized Exponential Distribution, Acceptance Sampling Plan, and Consumer’s and Producer Risks

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Eatimation Availability Function Through Determination The Optimal Imperfect Preventive Maintenance Period By using Simulation
...Show More Authors

This paper deals with the modeling of a preventive maintenance strategy applied to a single-unit system subject to random failures.

According to this policy, the system is subjected to imperfect periodic preventive maintenance restoring it to ‘as good as new’ with probability

p and leaving it at state ‘as bad as old’ with probability q. Imperfect repairs are performed following failures occurring between consecutive

preventive maintenance actions, i.e the times between failures follow a decreasing quasi-renewal process with parameter a. Considering the

average durations of the preventive and corrective maintenance actions a

... Show More
View Publication Preview PDF
Crossref