With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusion Detection System (IDS). Success is measured by a variety of metrics, including accuracy, precision, recall, F1-Score, and execution time. Applying feature selection approaches such as Analysis of Variance (ANOVA), Mutual Information (MI), and Chi-Square (Ch-2) reduced execution time, increased detection efficiency and accuracy, and boosted overall performance. All classifiers achieve the greatest performance with 99.99% accuracy and the shortest computation time of 0.0089 seconds while using ANOVA with 10% of features.
Wireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving ener
... Show MoreThe results shows existence of metals such as copper, iron, Cadmium, lead and zinc in most of examined samples , the highest concentration are up to (2.26, 40.82, 282.5, 31.02, 19.26, 4.34) Part per million) ppm) in pasta hot (Zer brand), Indomie with chicken, granule (Zer brand), brand (Zer brand), and rice (mahmood brand) respectively, with presence nickel in spaghetti( Zer brand), granule, Zer brand with concentration reached to 4.34 ppm and 1.06 ppm respectively.
The results of cereals group and its products show that two kinds of fungi, Aspergillus spp. and Penicillin spp. were found in rice (Mahmood brand) with numbers got to 1.5×103 Colony Forming Unit/ gram (c.f.u./g),while Bacillus cereus and Staphylococcus aureus were isola
In this article, we will present a quasi-contraction mapping approach for D iteration, and we will prove that this iteration with modified SP iteration has the same convergence rate. At the other hand, we prove that the D iteration approach for quasi-contraction maps is faster than certain current leading iteration methods such as, Mann and Ishikawa. We are giving a numerical example, too.
This paper deals with estimation of the reliability system in the stress- strength model of the shape parameter for the power distribution. The proposed approach has been including different estimations methods such as Maximum likelihood method, Shrinkage estimation methods, least square method and Moment method. Comparisons process had been carried out between the various employed estimation methods with using the mean square error criteria via Matlab software package.
The multiple linear regression model is an important regression model that has attracted many researchers in different fields including applied mathematics, business, medicine, and social sciences , Linear regression models involving a large number of independent variables are poorly performing due to large variation and lead to inaccurate conclusions , One of the most important problems in the regression analysis is the multicollinearity Problem, which is considered one of the most important problems that has become known to many researchers , As well as their effects on the multiple linear regression model, In addition to multicollinearity, the problem of outliers in data is one of the difficulties in constructing the reg
... Show MoreThe rapid success and the field dilation of Daish organization in both Iraq and Syria make academic institutes and research centers to pay attention to its propaganda means to gain its public opinion, and to further investigation about new methods employed by this organization to disseminate its messages to the public, particularly young people in large areas of the world. This organization uses traditional propaganda techniques on psychological war and its levels, social network sites and platforms that are distributed online. This study seeks to expose more persuasive methods used by the organization to gain multiple classes of society and to disseminate its extremist ideological thoughts. It also studies the psychological operation an
... Show MoreThe study aims to detect the presence of carbapenems genes and the prevalence of antibiotic-resistant E. coli in the Tigris River. Samples were collected from three sites of the Tigris River: S1Adhamiya, S2 Medical city hospital, and S3 Abu Nuwas. It diagnosed 40 isolates of E. coli out of 67 isolates of bacteria by Vitek2. The antibiotic sensitivity was determined by the disk diffusion method. E.coli isolates were tested against 7 antibiotics these belonged to β-lactam, Carbapenem. Also, the resistance genes) blaVIM and blaNDM) detected for these isolates of E. coli. The results appeared resistance of E.coli against AMC 82.5%, PRL 62.5%, AM 55%, and moderate resistance
... Show MoreWith the growth of the use mobile phones, people have become increasingly interested in using Short Message Services (SMS) as the most suitable communications service. The popularity of SMS has also given rise to SMS spam, which refers to any unwanted message sent to a mobile phone as a text. Spam may cause many problems, such as traffic bottlenecks or stealing important users' information. This paper, presents a new model that extracts seven features from each message before applying a Multiple Linear Regression (MLR) to assign a weight to each of the extracted features. The message features are fed into the Extreme Learning Machine (ELM) to determine whether they are spam or ham. To evaluate the proposed model, the UCI bench
... Show MoreThe major of DDoS attacks use TCP protocol and the TCP SYN flooding attack is the most common one among them. The SYN Cookie mechanism is used to defend against the TCP SYN flooding attack. It is an effective defense, but it has a disadvantage of high calculations and it doesn’t differentiate spoofed packets from legitimate packets. Therefore, filtering the spoofed packet can effectively enhance the SYN Cookie activity. Hop Count Filtering (HCF) is another mechanism used at the server side to filter spoofed packets. This mechanism has a drawback of being not a perfect and final solution in defending against the TCP SYN flooding attack. An enhanced mechanism of Integrating and combining the SYN Cookie with Hop Count Filtering (HCF) mech
... Show MoreDigital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection aft
... Show More