Preferred Language
Articles
/
9hdcWZIBVTCNdQwC6azZ
Efficient Intrusion Detection Through the Fusion of AI Algorithms and Feature Selection Methods
...Show More Authors

With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusion Detection System (IDS). Success is measured by a variety of metrics, including accuracy, precision, recall, F1-Score, and execution time. Applying feature selection approaches such as Analysis of Variance (ANOVA), Mutual Information (MI), and Chi-Square (Ch-2) reduced execution time, increased detection efficiency and accuracy, and boosted overall performance. All classifiers achieve the greatest performance with 99.99% accuracy and the shortest computation time of 0.0089 seconds while using ANOVA with 10% of features.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Community Detection in Modular Complex Networks Using an Improved Particle Swarm Optimization Algorithm
...Show More Authors

     Community detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem.  In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Mechanical Science And Technology
Damage detection in glass/epoxy composite structure using 8–12 GHz X-band
...Show More Authors

View Publication
Scopus (7)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
An Evolutionary Algorithm with Gene Ontology-Aware Crossover Operator for Protein Complex Detection
...Show More Authors

     Evolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust E

... Show More
Scopus (3)
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
2020 2nd Annual International Conference On Information And Sciences (aicis)
An Enhanced Multi-Objective Evolutionary Algorithm with Decomposition for Signed Community Detection Problem
...Show More Authors

View Publication
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jun 04 2017
Journal Name
Baghdad Science Journal
Detection of zpx gene of Cronobacter sakazakii isolated from Clinical samples for Iraqi children under Two Years
...Show More Authors

The study included 200 samples were collected from children under two years included (50 samples from each of Cerebrospinal fluid, Blood, Stool and Urine) from, (Central Children Hospital and Children's Protections Educational Hospital) The Iraqi Ministry of Health, the Department of Health Baghdad .the period from the first of 2015 September to the first of December 2015, Were obtained isolates bacterial subjected to the cultural, microscopic and biochemical examination and diagnosed to the species by using vitek2 system .The results showed there were contamination in 6.5% of clinical samples. The diagnosed colonies which gave pink color on the MacConkey agar, golden yellow color on the Trypton Soy agar and green color on t

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Sep 22 2019
Journal Name
Baghdad Science Journal
Detection of CTX-M-type ESBLs from Escherichia coli Clinical Isolates from a Tertiary Hospital, Malaysia
...Show More Authors

The present study aims to detect CTX-M-type ESBL from Escherichia coli clinical isolates and to analyze their antibotic susceptibility patterns. One hundred of E. coli isolates were collected from different clinical samples from a tertiary hospital. ESBL positivity was determined by the disk diffusion method. PCR used for amplification of CTX-M-type ESBL produced by E. coli. Out of 100 E. coli isolates, twenty-four isolates (24%) were ESBL-producers. E. coli isolated from pus was the most frequent clinical specimen that produced ESBL (41.66%) followed by urine (34.21%), respiratory (22.23%), and blood (19.05%).  After PCR amplification of these 24 isolates, 10 (41.66%) isolates were found to possess CTX-M genes. The CTX-M type ESBL

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Sep 15 2014
Journal Name
Journal Of Clinical And Biomedical Sciences
Detection of EGFR Mutations in Bronchial Wash from Iraqi patients with nonsmall Cell Lung Cancer (NSCLC)
...Show More Authors

Background: Non-small cell lung cancer (NSCLC) is caused of 85% of all lung cancers. Among the most important factors for lung tumor growth and proliferation are the tyrosine kinase receptors that coded by the epidermal growth factor recep-tor (EGFR) gene. Activation of EGFR ultimately leads to developing of lung cancer. The present study was undertaken with an objective to detect EGFR mutations in bronchial wash from Iraqi patients with NSCLC before treatment. Methods: DNA was extracted from bronchial wash samples collected from 50 patients with NSCLC by using a Qiamp DNA Mini Kit (Qiagen, Hilden, Germany). Then, EGFR mutations were determined by using real-time RCR combined with two technologies, Amplification Refractory Mutation System (

... Show More
Crossref
Publication Date
Sun Jun 27 2021
Journal Name
Iraqi National Journal Of Nursing Specialties
Detection of Depression among Nurses Providing Care for Patients with COVID-19 at Baqubah Teaching Hospital
...Show More Authors

Objectives: The present study aims at detecting the depression among nurses who provide care for infected patients with corona virus phenomenon and to find out relationships between the depression and their demographic characteristics of age, gender, marital status, type of family, education, and years of experience of nurses in heath institutions, infection by corona virus, and their participation in training courses.
Methodology: A descriptive study is established for a period from October 10th, 2020 to April 15th, 2021. The study is conducted on a purposive (non-probability) sample of (100) nurse who are providing care for patients with COVID-19 and they are selected from the isolation wards. The instrument of the study is develope

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 30 2014
Journal Name
J Clin Biomed Sci
Detection of EGFR Mutations in Bronchial Wash from Iraqi patients with nonsmall Cell Lung Cancer (NSCLC)
...Show More Authors

Background: Non-small cell lung cancer (NSCLC) is caused of 85% of all lung cancers. Among the most important factors for lung tumor growth and proliferation are the tyrosine kinase receptors that coded by the epidermal growth factor recep-tor (EGFR) gene. Activation of EGFR ultimately leads to developing of lung cancer. The present study was undertaken with an objective to detect EGFR mutations in bronchial wash from Iraqi patients with NSCLC before treatment. Methods: DNA was extracted from bronchial wash samples collected from 50 patients with NSCLC by using a Qiamp DNA Mini Kit (Qiagen, Hilden, Germany). Then, EGFR mutations were determined by using real-time RCR combined with two technologies, Amplification Refractory Mutation System (

... Show More
Preview PDF
Publication Date
Sun Jul 01 2018
Journal Name
Computers And Electronics In Agriculture
Detection of charcoal rot (Macrophomina phaseolina) toxin effects in soybean (Glycine max) seedlings using hyperspectral spectroscopy
...Show More Authors

View Publication
Scopus (16)
Crossref (13)
Scopus Clarivate Crossref