With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusion Detection System (IDS). Success is measured by a variety of metrics, including accuracy, precision, recall, F1-Score, and execution time. Applying feature selection approaches such as Analysis of Variance (ANOVA), Mutual Information (MI), and Chi-Square (Ch-2) reduced execution time, increased detection efficiency and accuracy, and boosted overall performance. All classifiers achieve the greatest performance with 99.99% accuracy and the shortest computation time of 0.0089 seconds while using ANOVA with 10% of features.
Second language learner may commit many mistakes in the process of second language learning. Throughout the Error Analysis Theory, the present study discusses the problems faced by second language learners whose Kurdish is their native language. At the very stages of language learning, second language learners will recognize the errors committed, yet they would not identify the type, the stage and error type shift in the process of language learning. Depending on their educational background of English as basic module, English department students at the university stage would make phonological, morphological, syntactic, semantic and lexical as well as speech errors. The main cause behind such errors goes back to the cultural differences
... Show MoreMultiple linear regressions are concerned with studying and analyzing the relationship between the dependent variable and a set of explanatory variables. From this relationship the values of variables are predicted. In this paper the multiple linear regression model and three covariates were studied in the presence of the problem of auto-correlation of errors when the random error distributed the distribution of exponential. Three methods were compared (general least squares, M robust, and Laplace robust method). We have employed the simulation studies and calculated the statistical standard mean squares error with sample sizes (15, 30, 60, 100). Further we applied the best method on the real experiment data representing the varieties of
... Show MoreThe purpose of the study is the city of Baghdad, the capital of Iraq, was chosen to study the spectral reflection of the land cover and to determine the changes taking place in the areas of the main features of the city using the temporal resolution of multispectral bands of the satellite Landsat 5 and 8 for MSS and OLI sensors respectively belonging to NASA and for the period 1999-2021, and calculating the increase and decrease in the basic features of Baghdad. The main conclusions of the study were, This study from 1999 to 2021 and in two different seasons: the Spring of the growing season and Summer the dry season. When using the supervised classification method to determine the differences, the results showed remarkable changes. Where h
... Show MoreI
In this study, optical fibers were designed and implemented as a chemical sensor based on surface plasmon resonance (SPR) to estimate the age of the oil used in electrical transformers. The study depends on the refractive indices of the oil. The sensor was created by embedding the center portion of the optical fiber in a resin block, followed by polishing, and tapering to create the optical fiber sensor. The tapering time was 50 min. The multi-mode optical fiber was coated with 60 nm thickness gold metal. The deposition length was 4 cm. The sensor's resonance wavelength was 415 nm. The primary sensor parameters were calculated, including sensitivity (6.25), signal-to-noise ratio (2.38), figure of merit (4.88), and accuracy (3.2)
... Show MoreUser confidentiality protection is concerning a topic in control and monitoring spaces. In image, user's faces security in concerning with compound information, abused situations, participation on global transmission media and real-world experiences are extremely significant. For minifying the counting needs for vast size of image info and for minifying the size of time needful for the image to be address computationally. consequently, partial encryption user-face is picked. This study focuses on a large technique that is designed to encrypt the user's face slightly. Primarily, dlib is utilizing for user-face detection. Susan is one of the top edge detectors with valuable localization characteristics marked edges, is used to extract
... Show More
Detection of virulence gene agglutinin-like sequence (ALS) 1 by using molecular technology from clinical samples (
Background: Background : Patients with non-rheumatic atrial fibrillation have high risk of thromboembolism especially ischemic stroke usually arising from left atrial appendage .Transoesophageal echocardiography provides useful information for risk stratification in these patients as it detects thrombus in the left atrial or left atrial appendage. Objective : This study was conducted at Al-Kadhimiya Teaching Hospital to assess the prevalence of left atrial chamber thrombi in patients with chronic non-rheumatic atrial fibrillation using transoesophageal echocardiography and its clinical significance as well as to verify the superiority of transoesophageal over transthoracic echocardiography in the detection of these abnormalities. Type of
... Show More