We introduce and discus recent type of fibrewise topological spaces, namely fibrewise bitopological spaces, Also, we introduce the concepts of fibrewise closed bitopological spaces, fibrewise open bitopological spaces, fibrewise locally sliceable bitopological spaces and fibrewise locally sectionable bitopological spaces. Furthermore, we state and prove several propositions concerning with these concepts.
studied, and its important properties and relationship with both closed and open Nano sets were investigated. The new Nano sets were linked to the concept of Nano ideal, the development of nano ideal mildly closed set and it has been studied its properties. In addition to the applied aspect of the research, a sample was taken from patients infected with viral hepatitis, and by examining the infected people and using closed and open (nano mildly. and nano ideal mildly) sets, the important symptoms that constitute the core of this dangerous examining the infected people and using closed and open (nano mildly. and nano ideal mildly) sets, the important symptoms that constitute the core of this dangerous disease.
In this paper, we introduce a new class of sets, namely , s*g-ï¡-open sets and we show that the family of all s*g-ï¡-open subsets of a topological space ) ,X( ï´ from a topology on X which is finer than ï´ . Also , we study the characterizations and basic properties of s*g-ï¡open sets and s*g-ï¡-closed sets . Moreover, we use these sets to define and study a new class of functions, namely , s*g- ï¡ -continuous functions and s*g- ï¡ -irresolute functions in topological spaces . Some properties of these functions have been studied .
The digital revolution had greatly affected the methods through which we communicate, starting from the basic concepts of the internet technology and the web content in addition to the important issues that concern the culture of the digital media, the internet governance and the variation in the digital age in general and the graphic and internal design in particular.
This research addresses an important topic that goes along with the scientific development in the field of the digital design, especially in the internal and graphic designs. This study consists of two sections: the first includes the problem of the study and the need for it. Starting from the problem of the research, there is no clear perception of the formal characte
The significance fore supra topological spaces as a subject of study cannot be overstated, as they represent a broader framework than traditional topological spaces. Numerous scholars have proposed extension to supra open sets, including supra semi open sets, supra per open and others. In this research, a notion for ⱨ-supra open created within the generalizations of the supra topology of sets. Our investigation involves harnessing this style of sets to introduce modern notions in these spaces, specifically supra ⱨ - interior, supra ⱨ - closure, supra ⱨ - limit points, supra ⱨ - boundary points and supra ⱨ - exterior of sets. It has been examining the relationship with supra open. The research was also enriched with many
... Show MoreThe visual attraction of the fundamentals that require the availability in the design business, to achieve the needs of different social interactive and the need for recreation or entertainment as well as financial need and as such has considered the importance of a researcher studying the mechanics of visual attractions in the interior spaces have been identified according to the research problem the following question:
What are the mechanisms of visual attractions in the interior spaces and the current research aims to Recruitment mechanisms of visual attractions in the design of interior spaces as determined by three research limits are:
• Reduce the objective: the mechanics of visual attraction.
• Reducing the spatial: S
This paper is devoted to the discussion the relationships of connectedness between some types of graphs (resp. digraph) and Gm-closure spaces by using graph closure operators.
This paper presents the concepts of prepaths, paths, and cycles in α-topological spaces and studies them in orderable spaces. Also, many relationships are proved with their equivalences using some properties in topological spaces like compactness and locally connectedness.