Recently, wireless charging based RF harvesting has interfered our lives [1] significantly through the different applications including biomedical, military, IoT, RF energy harvesting, IT-care, and RFID technologies. Wirelessly powered low energy devices become significantly essential for a wide spectrum of sensing applications [1]. Such devices require for low energy resources from sunlight, mechanical vibration, thermal gradients, convection flows or other forms of harvestable energy [2]. One of the emerging power extraction resources based on passive devices is harvesting radio frequency (RF) signals powers [3]–[5]. Such applications need devices that can be organized in very large numbers, so, making separate node battery impractical. RF powered devices including sensor nods can be used potentially in ultra-low-power areas to extend the life battery span [4]. Moreover, modern biomedical implantable devices require power source channels for charging to prolong the lifetime of the implanted device and reduce the chances of battery replacements [5]. Furthermore, the ambient electromagnetic energy recycling possibility in dense urban zones population was significantly explored in [6]. Therefore, power conversion circuits to extract enough DC power from the incident electromagnetic waves for passive devices become urgent demand [7]. RF energy harvesters, generally, are consistent with an antenna, a power management circuit, and a rectifier [3]. The antenna part is the responsible element for collecting the RF energy from radiating sources. The appropriate antenna design is the one with a wide bandwidth of omnidirectional radiation patterns to collect the energy from a different direction at any frequency [8].
The continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre
... Show MoreEach school of Islamic jurisprudence has principles and rules upon which the diligent work in these schools is based. This is due to the view of sanctification of these rulings, as they are divine rulings. Therefore, the goal is to reach a ruling that represents the intent of the legislator as much as possible.
Hence, these schools of thought established rules for issuing fatwas with the intention of restricting the performance of a fatwa to the hands of those who are qualified for it and have met its conditions, so they gave priority to the most knowledgeable person over others to perform the fatwa. In the Hanafi school of thought, for example, the saying of Imam Abu Hanifa (may God have mercy on him) is given precedence over others,
Peak ground acceleration (PGA) is one of the critical factors that affect the determination of earthquake intensity. PGA is generally utilized to describe ground motion in a particular zone and is able to efficiently predict the parameters of site ground motion for the design of engineering structures. Therefore, novel models are developed to forecast PGA in the case of the Iraqi database, which utilizes the particle swarm optimization (PSO) approach. A data set of 187 historical ground-motion recordings in Iraq’s tectonic regions was used to build the explicit proposed models. The proposed PGA models relate to different seismic parameters, including the magnitude of the earthquake (Mw), average shear-wave velocity (VS30), focal depth (FD
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreBackground and Aim: due to the rapid growth of data communication and multimedia system applications, security becomes a critical issue in the communication and storage of images. This study aims to improve encryption and decryption for various types of images by decreasing time consumption and strengthening security. Methodology: An algorithm is proposed for encrypting images based on the Carlisle Adams and Stafford Tavares CAST block cipher algorithm with 3D and 2D logistic maps. A chaotic function that increases the randomness in the encrypted data and images, thereby breaking the relation sequence through the encryption procedure, is introduced. The time is decreased by using three secure and private S-Boxes rather than using si
... Show More