Preferred Language
Articles
/
8xc9kJMBVTCNdQwCe9Vv
A UWB Monopole Antenna Design based RF Energy Harvesting Technology
...Show More Authors

Recently, wireless charging based RF harvesting has interfered our lives [1] significantly through the different applications including biomedical, military, IoT, RF energy harvesting, IT-care, and RFID technologies. Wirelessly powered low energy devices become significantly essential for a wide spectrum of sensing applications [1]. Such devices require for low energy resources from sunlight, mechanical vibration, thermal gradients, convection flows or other forms of harvestable energy [2]. One of the emerging power extraction resources based on passive devices is harvesting radio frequency (RF) signals powers [3]–[5]. Such applications need devices that can be organized in very large numbers, so, making separate node battery impractical. RF powered devices including sensor nods can be used potentially in ultra-low-power areas to extend the life battery span [4]. Moreover, modern biomedical implantable devices require power source channels for charging to prolong the lifetime of the implanted device and reduce the chances of battery replacements [5]. Furthermore, the ambient electromagnetic energy recycling possibility in dense urban zones population was significantly explored in [6]. Therefore, power conversion circuits to extract enough DC power from the incident electromagnetic waves for passive devices become urgent demand [7]. RF energy harvesters, generally, are consistent with an antenna, a power management circuit, and a rectifier [3]. The antenna part is the responsible element for collecting the RF energy from radiating sources. The appropriate antenna design is the one with a wide bandwidth of omnidirectional radiation patterns to collect the energy from a different direction at any frequency [8].

Scopus Crossref
View Publication
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Digital Watermarking in Color Image Based On Joint Between DCT and DWT
...Show More Authors

The massive distribution and development in the digital images field with friendly software, that leads to produce unauthorized use. Therefore the digital watermarking as image authentication has been developed for those issues. In this paper, we presented a method depending on the embedding stage and extraction stag. Our development is made by combining Discrete Wavelet Transform (DWT) with Discrete Cosine Transform (DCT) depending on the fact that combined the two transforms will reduce the drawbacks that appears during the recovered watermark or the watermarked image quality of each other, that results in effective rounding method, this is achieved by changing the wavelets coefficients of selected DWT sub bands (HL or HH), followed by

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Information And Optimization Sciences
Hybrid deep learning model for Arabic text classification based on mutual information
...Show More Authors

View Publication
Crossref (1)
Clarivate Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Joint Source-Channel Coding for Wireless Image Transmission based OFDM-IDMA Systems
...Show More Authors

The source and channel coding for wireless data transmission can reduce
distortion, complexity and delay in multimedia services. In this paper, a joint sourcechannel
coding is proposed for orthogonal frequency division multiplexing -
interleave division multiple access (OFDM-IDMA) systems to transmit the
compressed images over noisy channels. OFDM-IDMA combines advantages of
both OFDM and IDMA, where OFDM removes inter symbol interference (ISI)
problems and IDMA removes multiple access interference (MAI). Convolutional
coding is used as a channel coding, while the hybrid compression method is used as
a source coding scheme. The hybrid compression scheme is based on wavelet
transform, bit plane slicing, polynomi

... Show More
View Publication Preview PDF
Publication Date
Sat Mar 31 2018
Journal Name
Journal Of Engineering
Estimation of Minimum Miscibility Pressure for 〖CO〗_2 Flood Based on EOS
...Show More Authors

CO2 Gas is considered one of the unfavorable gases and it causes great air pollution. It’s possible to decrease this pollution by injecting  gas in the oil reservoirs to provide a good miscibility and to increase the oil recovery factor. MMP was estimated by Peng Robinson equation of state (PR-EOS). South Rumila-63 (SULIAY) is involved for which the miscible displacement by  is achievable based on the standard criteria for success EOR processes. A PVT report was available for the reservoir under study. It contains deferential liberation (DL) and constant composition expansion (CCE) tests.  PVTi software is one of the (Eclipse V.2010) software’s packages, it has been used to achieve the goal.

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Sep 01 2024
Journal Name
Al-khwarizmi Engineering Journal
Electromagnetic Scattering Properties and Characterisation of Sintered SiC Composite–Based Microwave Spectrum
...Show More Authors

واحدة من أكثر مواد السيراميك الهيكلية الواعدة هي كربيد السيليكون(SiC) ، حيث له خصائص حرارية وكهروميكانيكية ممتازة. هذه الخصائص مفيدة ل CMC لتعزيز أداء المركب خاصة عند إضافات النانو المتكاملة. في هذا البحث, تم تصنيع مركب SiC من SiC بثلاثة تركيزات مع  ZnO و Si. تم اختبار الخواص المغناطيسية لجميع المخاليط باستخدام مراقبة العينة الاهتزازية (VSM). تم تلبيد العينات الخضراء في فرن التلبيد عند 1600 درجة مئوية في بيئة النيتروجي

... Show More
View Publication
Crossref
Publication Date
Mon Feb 20 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Text Encryption Algorithm Based on Chaotic Neural Network and Random Key Generator
...Show More Authors

This work presents a symmetric cryptography coupled with Chaotic NN , the encryption algorithm process the data as a blocks and it consists of multilevel( coding of character, generates array of keys (weights),coding of text and chaotic NN ) , also the decryption process consists of multilevel (generates array of keys (weights),chaotic NN, decoding of text and decoding of character).Chaotic neural network is used as a part of the proposed system with modifying on it ,the keys that are used in chaotic sequence are formed by proposed key generation algorithm .The proposed algorithm appears efficiency during the execution time where it can encryption and decryption long messages by short time and small memory (chaotic NN offer capacity of m

... Show More
View Publication Preview PDF
Publication Date
Wed Apr 15 2020
Journal Name
Al-mustansiriyah Journal Of Science
Adaptation Proposed Methods for Handling Imbalanced Datasets based on Over-Sampling Technique
...Show More Authors

Classification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE),  Border

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Feb 04 2022
Journal Name
Neuroquantology
Detecting Damaged Buildings on Post-Hurricane Satellite Imagery based on Transfer Learning
...Show More Authors

In this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Fri Nov 03 2023
Journal Name
Iraqi Journal Of Pharmaceutical Sciences( P-issn 1683 - 3597 E-issn 2521 - 3512)
Study the Variables Affecting Formulation of Ethylcellulose-based Microsponges Loaded with Clobetasol
...Show More Authors

Clobetasol propionate (CP) is a super potent corticosteroid widely used to treat various skin disorders such as atopic dermatitis and psoriasis. However, its utility for topical application is hampered due to its common side effects, such as skin atrophy, steroidal acne, hypopigmentation, and allergic contact dermatitis. Microsponge is a unique three-dimensional microstructure particle with micro and nano-meters-wide cavities, which can encapsulate both hydrophilic and lipophilic drugs providing increased efficacy and safety. The aim of the current study is to prepare and optimize clobetasol-loaded microsponges. The emulsion solvent diffusion method is used for the preparation of ethylcellulose (EC)-based microsponges. The impact of

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Machine Learning Based Crop Yield Prediction Model in Rajasthan Region of India
...Show More Authors

     The present study investigates the implementation of machine learning models on crop data to predict crop yield in Rajasthan state, India. The key objective of the study is to identify which machine learning model performs are better to provide the most accurate predictions. For this purpose, two machine learning models (decision tree and random forest regression) were implemented, and gradient boosting regression was used as an optimization algorithm. The result clarifies that using gradient boosting regression can reduce the yield prediction mean square error to 6%. Additionally, for the present data set, random forest regression performed better than other models. We reported the machine learning model's performance using Mea

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref