Average per capita GDP income is an important economic indicator. Economists use this term to determine the amount of progress or decline in the country's economy. It is also used to determine the order of countries and compare them with each other. Average per capita GDP income was first studied using the Time Series (Box Jenkins method), and the second is linear and non-linear regression; these methods are the most important and most commonly used statistical methods for forecasting because they are flexible and accurate in practice. The comparison is made to determine the best method between the two methods mentioned above using specific statistical criteria. The research found that the best approach is to build a model for predicting Iraq’s average GDP per capita income by relying on the amounts of average GDP per capita income in the past years (1981-2020). The researcher found that in a second way, it became clear that the non-linear regression model of the Asian model was the best model representing (average per capita GDP income) in Iraq, and this model was used to predict the period (20221-2027). When comparing the two methods of projected amounts up to 2027, it was found that the best method was the second based on the indicator mean absolute percentage error (MAPE) because he has the least value.
Abstract Throughout this paper R represents commutative ring with identity and M is a unitary left R-module, the purpose of this paper is to study a new concept, (up to our knowledge), named St-closed submodules. It is stronger than the concept of closed submodules, where a submodule N of an R-module M is called St-closed (briefly N ≤Stc M) in M, if it has no proper semi-essential extensions in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of K then N = K. An ideal I of R is called St-closed if I is an St-closed R-submodule. Various properties of St-closed submodules are considered.
In this review paper, several studies and researches were surveyed for assisting future researchers to identify available techniques in the field of classification of Synthetic Aperture Radar (SAR) images. SAR images are becoming increasingly important in a variety of remote sensing applications due to the ability of SAR sensors to operate in all types of weather conditions, including day and night remote sensing for long ranges and coverage areas. Its properties of vast planning, search, rescue, mine detection, and target identification make it very attractive for surveillance and observation missions of Earth resources. With the increasing popularity and availability of these images, the need for machines has emerged to enhance t
... Show MoreIn this paper mildly-regular topological space was introduced via the concept of mildly g-open sets. Many properties of mildly - regular space are investigated and the interactions between mildly-regular space and certain types of topological spaces are considered. Also the concept of strong mildly-regular space was introduced and a main theorem on this space was proved.
Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreA study to find the optimum separators pressures of separation stations has been performed. Stage separation of oil and gas is accomplished with a series of separators operating at sequentially reduced pressures. Liquid is discharged from a higher-pressure separator into the lower-pressure separator. The set of working separator pressures that yields maximum recovery of liquid hydrocarbon from the well fluid is the optimum set of pressures, which is the target of this work.
A computer model is used to find the optimum separator pressures. The model employs the Peng-Robinson equation of state (Peng and Robinson 1976) for volatile oil. The application of t
A novel robust finite time disturbance observer (RFTDO) based on an independent output-finite time composite control (FTCC) scheme is proposed for an air conditioning-system temperature and humidity regulation. The variable air volume (VAV) of the system is represented by two first-order mathematical models for the temperature and humidity dynamics. In the temperature loop dynamics, a RFTDO temperature (RFTDO-T) and an FTCC temperature (FTCC-T) are designed to estimate and reject the lumped disturbances of the temperature subsystem. In the humidity loop, a robust output of the FTCC humidity (FTCC-H) and RFTDO humidity (RFTDO-H) are also designed to estimate and reject the lumped disturbances of the humidity subsystem. Based on Lyapunov theo
... Show MoreGlaucoma is one of the most dangerous eye diseases. It occurs as a result of an imbalance in the drainage and flow of the retinal fluid. Consequently, intraocular pressure is generated, which is a significant risk factor for glaucoma. Intraocular pressure causes progressive damage to the optic nerve head, thus leading to vision loss in the advanced stages. Glaucoma does not give any signs of disease in the early stages, so it is called "the Silent Thief of Sight". Therefore, early diagnosis and treatment of retinal eye disease is extremely important to prevent vision loss. Many articles aim to analyze fundus retinal images and diagnose glaucoma. This review can be used as a guideline to help diagnose glaucoma. It presents 63 artic
... Show MoreThis paper including a gravitational lens time delays study for a general family of lensing potentials, the popular singular isothermal elliptical potential (SIEP), and singular isothermal elliptical density distribution (SIED) but allows general angular structure. At first section there is an introduction for the selected observations from the gravitationally lensed systems. Then section two shows that the time delays for singular isothermal elliptical potential (SIEP) and singular isothermal elliptical density distributions (SIED) have a remarkably simple and elegant form, and that the result for Hubble constant estimations actually holds for a general family of potentials by combining the analytic results with data for the time dela
... Show MoreIt is a common Knowledge that adverbs in Turkish languages can modify verbs, adjectives, nouns or other adverbs. Moreover, adverbs can determine the meanings of nouns and verbs in a sentence as far as time, place, manner, quantity and interrogative are concerned. The present study debates adverbs’ functions in Namiq Kamal’s play Vatan yahut Silistre.
The study sheds light on the author’s use of the adverbs to describe the required theatrical actions of the play and to convey his reflections and thoughts easily to the auidence. One of the main hindrances encountered in conducting the study is the shortage of the upto date academic resources necessary for
... Show MoreThere are many methods of searching large amount of data to find one particular piece of information. Such as find name of person in record of mobile. Certain methods of organizing data make the search process more efficient the objective of these methods is to find the element with least cost (least time). Binary search algorithm is faster than sequential and other commonly used search algorithms. This research develops binary search algorithm by using new structure called Triple, structure in this structure data are represented as triple. It consists of three locations (1-Top, 2-Left, and 3-Right) Binary search algorithm divide the search interval in half, this process makes the maximum number of comparisons (Average case com
... Show More