Development and population expansion have the lion's share of driving up the fuel cost. Biodiesel has considerable attention as a renewable, ecologically friendly and alternative fuel source. In this study, CaO nanocatalyst is produced from mango leaves as a catalysis for the transesterification of waste cooking oil (WCO) to biodiesel. The mango tree is a perennial plant, and its fruit holds significant economic worth due to its abundance of vitamins and minerals. This plant has a wide geographical range and its leaves can be utilized without any negative impact on its growth and yield. An analysis was conducted to determine the calcium content in the fallen leaves, revealing a significant quantity of calcium that holds potential for utilization. The catalyst was characterized by different analytic techniques such as XRD, SEM-EDS, FT-IR, and BET analyses. Several parameters impacted on the transesterification process were exploited by conventional transesterification (batch). The result revealed that the optimum reaction was reached at a methanol to oil ratio of 50% w/w, catalyst loading of 3%, temperature of 65℃ and reaction time of 1.5 h with a yield of 93.21%, and the activation energy of the transesterification reaction was found to be 38.906 KJ mol-1. The reaction was verified to be irreversible pseudo-first order based on a linear Arrhenius plot and a high R2 value. The catalyst shows good stability and catalytic activity when it is reused and the yield was found to be 80.293% in the 5th cycle.
In this work, porous silicon gas sensor hs been fabricated on n-type crystalline silicon (c-Si) wafers of (100) orientation denoted by n-PS using electrochemical etching (ECE) process at etching time 10 min and etching current density 40 mA/cm2. Deposition of the catalyst (Cu) is done by immersing porous silicon (PS) layer in solution consists of 3ml from (Cu) chloride with 4ml (HF) and 12ml (ethanol) and 1 ml (H2O2). The structural, morphological and gas sensing behavior of porous silicon has been studied. The formation of nanostructured silicon is confirmed by using X-ray diffraction (XRD) measurement as well as it shows the formation of an oxide silicon layer due to chemical reaction. Atomic force microscope for PS illustrates that the p
... Show MoreBasrah crude oil Vacuum residue 773+ K with specific gravity 1.107 and 4.87wt. % sulfur, was treated with hexane commercial fraction provided from Al-Taji Gas Company for preparing deasphaltened oil(DAO)suitable for hydrotreating process. Deasphaltening was carried out with 1h mixing time, 10ml:1g solvent to oil ratio and at room temperature. Hexane deasphaltened oil was hydrotreated on presulfied commercial Co-Mo/γ-Al2O3 catalyst in a trickle bed reactor. The hydrotreating process was carried out at temperature 660 K,LHSV 1.3 h^ –1, H2/oil ratio 300 l/l and constant pressure of 4MPa. The hydrotreated product was distillated under vacuum distillation unit. It is found that the mixture of 75% of vacuum residue with 25% anthracene satisfie
... Show MoreForty isolates of Bacillus spp. were isolated from fifty samples including different source of soil to detect the ability to produce keratinase enzyme in liquid state fermentation, Bacillus (Bs13)was the highest keratinase producer , it was identified as a strain of Bacillus licheniformis. The optimum conditions for keratinase productions were in a media contains keratin 4% (hooves) as a carbon and nitrogen and energy sources, peptone 1% as a secondary nitrogen source with pH 8 , inculums size 1%, and incubated at 37Co for 24 hrs.
Many tools and techniques have been recently adopted to develop construction materials that are less harmful and friendlier to the environment. New products can be achieved through the recycling of waste material. Thus, this study aims to use recycled glass bottles as sustainable materials.
Our challenge is to use nano glass powder by the addition or replacement of the weight of the cement for producing concrete with enhanced strength.
A nano recycled glass p
Many tools and techniques have been recently adopted to develop construction materials that are less harmful and friendlier to the environment. New products can be achieved through the recycling of waste material. Thus, this study aims to use recycled glass bottles as sustainable materials.
Our challenge is to use nano glass powder by the addition or replacement of the weight of the cement for producing concrete with enhanced strength.
A nano recycled glass p
The biochar prepared from sawdust raw material was applied in this study for the treatment of wastewater polluted with methyl orange dye. The effect of pH (2-11), initial concertation (50-250 mg/L) and time were studied. The isotherm of Langmuir, Frendluch and temkin models studied. The Langmuir model was the best to explain the adsorption process, maximum uptake was 136.67 mg/g at 25Co of methyl orange dye. Equilibrium reached after four hours of contact for most adsorbents.The values of thermodynamic parameters ∆G were negative at various temperatures, so the process spontaneous, while ∆H values were 16683 j/mol and ∆S values was 60.82 j/mol.k.
Samples of tea leaves (Green tea, Gugarate tea and Black tea used commonly in Iraq) are dried, grinded, pressed and submitted for the elemental analysis by x-ray fluorescence technique (XRF). The concentrations of major, minor and trace elements are determined. The major elements were Na, Mg, Al, K, Si, Ca, Mn, Fe, S and P. Of these elements, Ca, concentration in Gugarate tea leaves is three times, it's level in the other types of tea. Titanium, Cl, Rb and Sr are found as minor elements, while other elements such as Cu, Zn, V, Cr, Co, ...etc are found as trace elements. Of these trace elements considerable concentration values are found for some toxic elements Hg, Cd, Pb and As. Green tea contains 1.1 ppm Hg and 4.4 ppm Pb. Gugarate tea
... Show MoreThe present study was aimed to screen the ability of local isolates of Bacillus spp. (56 isolates) for nattokinase production using solid state fermentation, then optimize the nutritional conditions for enzyme production. The isolates were subjected to the primary and secondary screening process to select the Bacillus isolate which give the highest production of enzyme. It was found that Bacillus sp. B24 had the highest productivity of the enzyme (25.58U/mg protein). The optimum conditions for nattokinase production were performed by the solid state fermentation and found that the wheat bran was the best medium at initial moisture ratio 1.0:1.0 (w/v) using distilled water as moisturizing solution with initial pH of 7.0 after inoculation
... Show More