Preferred Language
Articles
/
7hiURpcBVTCNdQwCM5ZM
Reservoir permeability prediction based artificial intelligence techniques
...Show More Authors

   Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes beyond simply predicting lithology to provide a detailed quantification of primary minerals (e.g., calcite and dolomite) as well as secondary ones (e.g., shale and anhydrite). The results show important lithological contrast with the high-porosity layers correlating to possible reservoir areas. The richness of Quanti-Elan's interpretations goes beyond what log analysis alone can reveal. The methodology is described in-depth, discussing the approaches used to train neural networks (e.g., data processing, network architecture). A case study where output of neural network predictions of permeability in a particular oil well are compared with core measurements. The results indicate an exceptional closeness between predicted and actual values, further emphasizing the power of this approach. An extrapolated neural network model using lithology (dolomite and limestone) and porosity as input emphasizes the close match between predicted vs. observed carbonate reservoir permeability. This case study demonstrated the ability of neural networks to accurately characterize and predict permeability in complex carbonate systems. Therefore, the results confirmed that neural networks are a reliable and transformative technology tool for oil reservoirs management, which can help to make future predictive methodologies more efficient hydrocarbon recovery operations.

Crossref
View Publication
Publication Date
Sat Jul 17 2021
Journal Name
Revista Geintec-gestao Inovacao E Tecnologias
Moderating Role of Virtual Teams on the Relation between Cultural Intelligence and Strategic Excellence
...Show More Authors

Based on the theoretical review of researches and studies concerned with virtual teams in organizations, it was found that the role of virtual teams varies from case to another, and it may be positive or opposite. The purpose of the current research is to examine the role of virtual teams in the impact of cultural intelligence on the strategic excellence of Zain worldwide Group. An electronic questionnaire was designed through the (Google) and (Microsoft) forms, and distributed then on a sample of (146) participants with a high organizational level of the HRM departments within the group. The results showed that there was a positive moderator role of virtual teams in the relationship of cultural intelligence and strategic excellence

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Proceedings Of The Eleventh International Network Conference (inc 2016)
A review on power consumption reduction techniques on OFDM
...Show More Authors

Scopus (2)
Scopus
Publication Date
Mon Dec 03 2018
Journal Name
Journal Of Engineering
Error Investigation for Free Form Surfaces in Bezier Techniques
...Show More Authors

Surface modeling utilizing Bezier technique is one of the more important tool in computer aided geometric design (CAD). The aim of this work is to design and implement multi-patches Bezier free-form surface. The technique has an effective contribution in technology domains and in ships, aircrafts, and cars industry, moreover for its wide utilization in making the molds. This work is includes the synthesis of these patches in a method that is allow the participation of these control point for the merge of the patches, and the confluence of patches at similar degree sides due to degree variation per patch.  The model has been implemented to represent the surface. The interior data of the desired surfaces designed by M

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Science International
USING CRYPTOANALYSIS POLICIES AND TECHNIQUES TO CREATE STRONG PASSWORD
...Show More Authors

Publication Date
Sun Jan 01 2017
Journal Name
Proceedings Of The Conference “recent Trends In Engineering Sciences And Sustainability”, Baghdad
GNSS positioning techniques for enhancing Google Earth data quality
...Show More Authors

Due to the easily access to the satellite images, Google Earth (GE) images have become more popular than other online virtual globes. However, the popularity of GE is not an indication of its accuracy. A considerable amount of literature has been published on evaluating the positional accuracy of GE data; however there are few studies which have investigated the subject of improving the GE accuracy. In this paper, a practical method for enhancing the horizontal positional accuracy of GE is suggested by establishing ten reference points, in University of Baghdad main campus, using different Global Navigation Satellite System (GNSS) observation techniques: Rapid Static, Post-Processing Kinematic, and Network. Then, the GE image for the study

... Show More
Publication Date
Mon Oct 02 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Image Encryption Techniques Using Dynamic Approach: An Article Review
...Show More Authors

In this study, dynamic encryption techniques are explored as an image cipher method to generate S-boxes similar to AES S-boxes with the help of a private key belonging to the user and enable images to be encrypted or decrypted using S-boxes. This study consists of two stages: the dynamic generation of the S-box method and the encryption-decryption method. S-boxes should have a non-linear structure, and for this reason, K/DSA (Knutt Durstenfeld Shuffle Algorithm), which is one of the pseudo-random techniques, is used to generate S-boxes dynamically. The biggest advantage of this approach is the production of the inverted S-box with the S-box. Compared to the methods in the literature, the need to store the S-box is eliminated. Also, the fabr

... Show More
View Publication
Publication Date
Thu Jun 01 2023
Journal Name
Sustainable Engineering And Innovation
A review of enhanced image techniques using chaos encryption
...Show More Authors

Secured multimedia data has grown in importance over the last few decades to safeguard multimedia content from unwanted users. Generally speaking, a number of methods have been employed to hide important visual data from eavesdroppers, one of which is chaotic encryption. This review article will examine chaotic encryption methods currently in use, highlighting their benefits and drawbacks in terms of their applicability for picture security.

View Publication
Scopus Crossref
Publication Date
Tue Dec 20 2022
Journal Name
2022 International Conference On Computer And Applications (icca)
Improve Data Mining Techniques with a High-Performance Cluster
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Aug 21 2023
Journal Name
Communications In Mathematical Biology And Neuroscience
New techniques to estimate the solution of autonomous system
...Show More Authors

This research aims to solve the nonlinear model formulated in a system of differential equations with an initial value problem (IVP) represented in COVID-19 mathematical epidemiology model as an application using new approach: Approximate Shrunken are proposed to solve such model under investigation, which combines classic numerical method and numerical simulation techniques in an effective statistical form which is shrunken estimation formula. Two numerical simulation methods are used firstly to solve this model: Mean Monte Carlo Runge-Kutta and Mean Latin Hypercube Runge-Kutta Methods. Then two approximate simulation methods are proposed to solve the current study. The results of the proposed approximate shrunken methods and the numerical

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sat Aug 06 2022
Journal Name
Ijci. International Journal Of Computers And Information
Techniques for DDoS Attack in SDN: A Comparative Study
...Show More Authors

Abstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS

... Show More
View Publication
Crossref (1)
Crossref