Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.
In the present work, the surface properties of mixed binary surfactants containing sodium dodecylbenzene sulfate (SDBS) and Tween 80 (TW80) surfactants in aqueous solutions were studied at temperature 293 K using surface tension measurements. The critical micelle concentration (cmc) magnitude for both individual surfactants and their mixtures were established the obtained results revealed that the magnitude of cmc of the mixtures are less than the magnitude of individual surfactants and decrease with the increase in Tween 80 percent in solution which indicate the nonideal mixing of the two surfactants. The values of molecular interaction parameters and the mole fraction of surfactants in the micelle (X1) were calculated
... Show MoreThe aim of this paper was to investigate the removal efficiencies of Zn+2 ions from wastewater by adsorption (using tobacco leaves) and forward osmosis (using cellulose triacetate (CTA) membrane). Various experimental parameters were investigated in adsorption experiment such as: effect of pH (3 - 7), contact time (0 - 220) min, solute concentration (10 - 100) mg/l, and adsorbent dose (0.2 - 5)g. Whereas for forward osmosis the operating parameters studied were: draw solution concentration (10 - 150) g/l, pH of feed solution (4 - 7), feed solution concentration (10 - 100) mg/l. The result showed that the removal efficiency by using adsorption was 70% and the removal efficiency by using forward osmosis was 96.2 %.
... Show MoreThe research aims present to highlight the importance of creating construction Organizational appropriate to achieve strategic success and reduce many of the negative effects experienced by organizations has been developing his questionnaire especially so was distributed to a sample of workers in the Asia-cellular as sample included (60) responsive 0 and can embody intellectual dilemma following questions (What are the dimensions of the organizational infrastructure, and what are the justifications for carrying out the reform and development cleared the organizational structure to make it more flexible) to contribute to the achievement of the strategic requirements for success of the organization surveyed.
Find recommended a number o
Different ANN architectures of MLP have been trained by BP and used to analyze Landsat TM images. Two different approaches have been applied for training: an ordinary approach (for one hidden layer M-H1-L & two hidden layers M-H1-H2-L) and one-against-all strategy (for one hidden layer (M-H1-1)xL, & two hidden layers (M-H1-H2-1)xL). Classification accuracy up to 90% has been achieved using one-against-all strategy with two hidden layers architecture. The performance of one-against-all approach is slightly better than the ordinary approach
In this study, we review the ARIMA (p, d, q), the EWMA and the DLM (dynamic linear moodelling) procedures in brief in order to accomdate the ac(autocorrelation) structure of data .We consider the recursive estimation and prediction algorithms based on Bayes and KF (Kalman filtering) techniques for correlated observations.We investigate the effect on the MSE of these procedures and compare them using generated data.
Information hiding strategies have recently gained popularity in a variety of fields. Digital audio, video, and images are increasingly being labelled with distinct but undetectable marks that may contain a hidden copyright notice or serial number, or even directly help to prevent unauthorized duplication. This approach is extended to medical images by hiding secret information in them using the structure of a different file format. The hidden information may be related to the patient. In this paper, a method for hiding secret information in DICOM images is proposed based on Discrete Wavelet Transform (DWT). Firstly. segmented all slices of a 3D-image into a specific block size and collecting the host image depend on a generated key
... Show MoreIn this study, the mobile phone traces concern an ephemeral event which represents important densities of people. This research aims to study city pulse and human mobility evolution that would be arise during specific event (Armada festival), by modelling and simulating human mobility of the observed region, depending on CDRs (Call Detail Records) data. The most pivot questions of this research are: Why human mobility studied? What are the human life patterns in the observed region inside Rouen city during Armada festival? How life patterns and individuals' mobility could be extracted for this region from mobile DB (CDRs)? The radius of gyration parameter has been applied to elaborate human life patterns with regards to (work, off) days for
... Show MoreData hiding is the process of encoding extra information in an image by making small modification to its pixels. To be practical, the hidden data must be perceptually invisible yet robust to common signal processing operations. This paper introduces a scheme for hiding a signature image that could be as much as 25% of the host image data and hence could be used both in digital watermarking as well as image/data hiding. The proposed algorithm uses orthogonal discrete wavelet transforms with two zero moments and with improved time localization called discrete slantlet transform for both host and signature image. A scaling factor ? in frequency domain control the quality of the watermarked images. Experimental results of signature image
... Show More