Preferred Language
Articles
/
7hb2-okBVTCNdQwCe46x
A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications
...Show More Authors
Abstract<p>Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for many applications dismissing the use of DL. Having sufficient data is the first step toward any successful and trustworthy DL application. This paper presents a holistic survey on state-of-the-art techniques to deal with training DL models to overcome three challenges including small, imbalanced datasets, and lack of generalization. This survey starts by listing the learning techniques. Next, the types of DL architectures are introduced. After that, state-of-the-art solutions to address the issue of lack of training data are listed, such as Transfer Learning (TL), Self-Supervised Learning (SSL), Generative Adversarial Networks (GANs), Model Architecture (MA), Physics-Informed Neural Network (PINN), and Deep Synthetic Minority Oversampling Technique (DeepSMOTE). Then, these solutions were followed by some related tips about data acquisition needed prior to training purposes, as well as recommendations for ensuring the trustworthiness of the training dataset. The survey ends with a list of applications that suffer from data scarcity, several alternatives are proposed in order to generate more data in each application including Electromagnetic Imaging (EMI), Civil Structural Health Monitoring, Medical imaging, Meteorology, Wireless Communications, Fluid Mechanics, Microelectromechanical system, and Cybersecurity. To the best of the authors’ knowledge, this is the first review that offers a comprehensive overview on strategies to tackle data scarcity in DL.</p>
Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 01 2013
Journal Name
2013 Sixth International Conference On Developments In Esystems Engineering
Ensure Security of Compressed Data Transmission
...Show More Authors

Data compression offers an attractive approach to reducing communication costs using available bandwidth effectively. It makes sense to pursue research on developing algorithms that can most effectively use available network. It is also important to consider the security aspect of the data being transmitted is vulnerable to attacks. The basic aim of this work is to develop a module for combining the operation of compression and encryption on the same set of data to perform these two operations simultaneously. This is achieved through embedding encryption into compression algorithms since both cryptographic ciphers and entropy coders bear certain resemblance in the sense of secrecy. First in the secure compression module, the given text is p

... Show More
View Publication
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Data Classification using Quantum Neural Network
...Show More Authors

In this paper, integrated quantum neural network (QNN), which is a class of feedforward

neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Communications
SDN Implementation in Data Center Network
...Show More Authors

View Publication
Scopus (17)
Crossref (13)
Scopus Crossref
Publication Date
Mon Feb 18 2019
Journal Name
Iraqi Journal Of Physics
Data visualization and distinct features extraction of the comet Ison 2013
...Show More Authors

The distribution of the intensity of the comet Ison C/2013 is studied by taking its histogram. This distribution reveals four distinct regions that related to the background, tail, coma and nucleus. One dimensional temperature distribution fitting is achieved by using two mathematical equations that related to the coordinate of the center of the comet. The quiver plot of the gradient of the comet shows very clearly that arrows headed towards the maximum intensity of the comet.

View Publication Preview PDF
Crossref
Publication Date
Sat Nov 02 2013
Journal Name
International Journal Of Computer Applications
Mixed Transforms Generated by Tensor Product and Applied in Data Processing
...Show More Authors

Finding orthogonal matrices in different sizes is very complex and important because it can be used in different applications like image processing and communications (eg CDMA and OFDM). In this paper we introduce a new method to find orthogonal matrices by using tensor products between two or more orthogonal matrices of real and imaginary numbers with applying it in images and communication signals processing. The output matrices will be orthogonal matrices too and the processing by our new method is very easy compared to other classical methods those use basic proofs. The results are normal and acceptable in communication signals and images but it needs more research works.

View Publication
Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Advanced Intelligent Data Hiding Using Video Stego and Convolutional Neural Networks
...Show More Authors

Steganography is a technique of concealing secret data within other quotidian files of the same or different types. Hiding data has been essential to digital information security. This work aims to design a stego method that can effectively hide a message inside the images of the video file.  In this work, a video steganography model has been proposed through training a model to hiding video (or images) within another video using convolutional neural networks (CNN). By using a CNN in this approach, two main goals can be achieved for any steganographic methods which are, increasing security (hardness to observed and broken by used steganalysis program), this was achieved in this work as the weights and architecture are randomized. Thus,

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Jun 29 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
A Comparison Study for The Performance of Polyethersulfone Ultrafiltration Mixed Matrix Membranes in The Removal of Heavy Metal Ions from Aqueous Solutions
...Show More Authors

Polyethersulfone (PES) ultrafiltration membrane blending NaX zeolite crystals as a hydrophilic additive was examined for zinc (II) and lead ions Pb (II) removal from aqueous solutions. The effect of NaX zeolite content on the permeation flux and removal efficiency was studied. The results showed that adding zeolite to the polymer matrix enhanced the permeation flux. The permeation flux of all the zeolite/PES matrix membranes was higher than the pristine membrane. No significant improvement was observed in the removal of Zn (II) ions using all prepared membranes as the removal percentage did not raise above 29.2%. However, the removal percentage of Pb (II) ions was enhanced to 97% using a membrane containing 0.9%wt. zeolite. Also, it was

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Tue Jan 02 2018
Journal Name
Journal Of Educational And Psychological Researches
Self-organized learning strategies and self-competence among talented students
...Show More Authors

Investigating the strength and the relationship between the Self-organized learning strategies and self-competence among talented students was the aim of this study. To do this, the researcher employed the correlation descriptive approach, whereby a sample of (120) male and female student were selected from various Iraqi cities for the academic year 2015-2016.  the researcher setup two scales based on the previous studies: one to measure  the Self-organized learning strategies which consist of (47) item and the other to measure the self-competence that composed of (50) item. Both of these scales were applied on the targeted sample to collect the required data

View Publication Preview PDF
Publication Date
Tue Dec 28 2021
Journal Name
2021 2nd Information Technology To Enhance E-learning And Other Application (it-ela)
Pedestrian and Objects Detection by Using Learning Complexity-Aware Cascades
...Show More Authors

View Publication Preview PDF
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Mar 30 2023
Journal Name
مجلة الحقيقة
University e-learning and its role in raising technological skills
...Show More Authors

تتبلور فكرة البحث حول التوصل لنوع العلاقة التي تربط التعليم الالكتروني خلال جائحة كورونا برفع المهارات التكنولوجية للأساتذة والطلاب، وتبرز أهمية البحث في ان نجاح الوصول لهذه العلاقة يمكن الإفادة منها في تغيير منهجية تطوير المهارات التكنولوجية مستقبلا وذلك باعتماد الجوانب التطبيقية الفعلية بدلا من الدورات وورش العمل والتي قد لا تضاهي الطريقة العملية في رفع مستوى المهارات المختلفة سواء التدريسية او التكنو

... Show More
View Publication Preview PDF