We have studied some types of ideals in a KU-semigroup by using the concept of a bipolar fuzzy set. Bipolar fuzzy S-ideals and bipolar fuzzy k-ideals are introduced, and some properties are investigated. Also, some relations between a bipolar fuzzy k-ideal and k-ideal are discussed. Moreover, a bipolar fuzzy k-ideal under homomorphism and the product of two bipolar fuzzy k-ideals are studied.
In the present paper, discuss the concept of fuzzy topological spectrum of a bounded commutative KU-algebra and study some of the characteristics of this topology. Also, we show that the fuzzy topological spectrum of this structure is compact and T1 -space.
In this paper, a design of the broadband thin metamaterial absorber (MMA) is presented. Compared with the previously reported metamaterial absorbers, the proposed structure provides a wide bandwidth with a compatible overall size. The designed absorber consists of a combination of octagon disk and split octagon resonator to provide a wide bandwidth over the Ku and K bands' frequency range. Cheap FR-4 material is chosen to be a substate of the proposed absorber with 1.6 thicknesses and 6.5×6.5 overall unit cell size. CST Studio Suite was used for the simulation of the proposed absorber. The proposed absorber provides a wide absorption bandwidth of 14.4 GHz over a frequency range of 12.8-27.5 GHz with more than %90 absorp
... Show MoreAbstract:
One of the important things provided by fuzzy model is to identify the membership functions. In the fuzzy reliability applications with failure functions of the kind who cares that deals with positive variables .There are many types of membership functions studied by many researchers, including triangular membership function, trapezoidal membership function and bell-shaped membership function. In I research we used beta function. Based on this paper study classical method to obtain estimation fuzzy reliability function for both series and parallel systems.
In this research two algorithms are applied, the first is Fuzzy C Means (FCM) algorithm and the second is hard K means (HKM) algorithm to know which of them is better than the others these two algorithms are applied on a set of data collected from the Ministry of Planning on the water turbidity of five areas in Baghdad to know which of these areas are less turbid in clear water to see which months during the year are less turbid in clear water in the specified area.
In this research two algorithms are applied, the first is Fuzzy C Means (FCM) algorithm and the second is hard K means (HKM) algorithm to know which of them is better than the others these two algorithms are applied on a set of data collected from the Ministry of Planning on the water turbidity of five areas in Baghdad to know which of these areas are less turbid in clear water to see which months during the year are less turbid in clear water in the specified area.
In this paper, we introduce the concepts of positive implicative [resp. implicative and commutative] Γ-KU-algebras, and obtain their some properties (including characterizations) respectively and some relationships among them. Next, we propose the notions of positive implicative [resp. implicative and commutative] Γ-ideals of a Γ-KU-algebra, and deal with their some properties (including characterizations) respectively and some relationships among them. Finally, we define a topological Γ-KU-algebra and discuss its various topological structures.
For the generality of fuzzy ideals in TM-algebra, a cubic ideal in this algebra has been studied, such as cubic ideals and cubic T-ideals. Some properties of these ideals are investigated. Also, we show that the cubic T-ideal is a cubic ideal, but the converse is not generally valid. In addition, a cubic sub-algebra is defined, and new relations between the level subset and a cubic sub-algebra are discussed. After that, cubic ideals and cubic T-ideals under homomorphism are studied, and the image (pre-image) of cubic T-ideals is discussed. Finally, the Cartesian product of cubic ideals in Cartesian product TM-algebras is given. We proved that the product of two cubic ideals of the Cartesian product of two TM-algebras is also a cubic ideal.