Deepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this aspect of the Deepfake detection task and proposes pre-processing steps to improve accuracy and close the gap between training and validation results with simple operations. Additionally, it differed from others by dealing with the positions of the face in various directions within the image, distinguishing the concerned face in an image containing multiple faces, and segmentation the face using facial landmarks points. All these were done using face detection, face box attributes, facial landmarks, and key points from the MediaPipe tool with the pre-trained model (DenseNet121). Lastly, the proposed model was evaluated using Deepfake Detection Challenge datasets, and after training for a few epochs, it achieved an accuracy of 97% in detecting the Deepfake
Malaria is a curative disease, with therapeutics available for patients, such as drugs that can prevent future malaria infections in countries vulnerable to malaria. Though, there is no effective malaria vaccine until now, although it is an interesting research area in medicine. Local descriptors of blood smear image are exploited in this paper to solve parasitized malaria infection detection problem. Swarm intelligence is used to separate the red blood cells from the background of the blood slide image in adaptive manner. After that, the effective corner points are detected and localized using Harris corner detection method. Two types of local descriptors are generated from the local regions of the effective corners which are Gabor based f
... Show MoreThis study was designed to evaluate the role of single session autologous facial fat grafting in correcting facial asymmetries after mixing it with platelet-rich fibrin (PRF) and injecting them into rich vascular facial muscular plane.
Fifteen patients (12 females and 3 males) with age ranging from 18 years to 40 years were included in this study and followed up during 6 months, all the patients were treated in the Al-Shaheed Ghazi Al-Hariri for specialized surgeries hospital (Medical City, Baghdad, Iraq).
Auto
Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
Semantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the po
Abstract
The study presents a mathematical model with a disaggregating approach to the problem of production planning of a fida Company; which belongs to the ministry of Industry. The study considers disaggregating the entire production into 3 productive families of (hydraulic cylinders, Aldblatt (dampers), connections hydraulics with each holds similar characteristics in terms of the installation cost, production time and stock cost. The Consequences are an ultimate use of the available production capacity as well as meeting the requirements of these families at a minimal cost using linear programming. Moreover, the study considers developing a Master production schedule that drives detailed material and production requi
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreThe detection for Single Escherichia Coli Bacteria has attracted great interest and in biology and physics applications. A nanostructured porous silicon (PS) is designed for rapid capture and detection of Escherichia coli bacteria inside the micropore. PS has attracted more attention due to its unique properties. Several works are concerning the properties of nanostructured porous silicon. In this study PS is fabricated by an electrochemical anodization process. The surface morphology of PS films has been studied by scanning electron microscope (SEM) and atomic force microscope (AFM). The structure of porous silicon was studied by energy-dispersive X-ray spectroscopy (EDX). Details of experimental methods and results are given and discussed
... Show More