Abstract In this study, an investigation is conducted to realise the possibility of organic materials use in radio frequency (RF) electronics for RF-energy harvesting. Iraqi palm tree remnants mixed with nickel oxide nanoparticles hosted in polyethylene, INP substrates, is proposed for this study. Moreover, a metamaterial (MTM) antenna is printed on the created INP substrate of 0.8 mm thickness using silver nanoparticles conductive ink. The fabricated antenna performances are instigated numerically than validated experimentally in terms of S11 spectra and radiation patterns. It is found that the proposed antenna shows an ultra-wide band matching bandwidth to cover the frequencies from 2.4 to 10 GHz with bore-sight gain variation from 2.2 to 3.43 dBi at maximum. The antenna size is compacted to a 32 mm × 24 mm using a fractal-shaped MTM when mounted on the INP substrate with a relative permittivity ɛr = 3.106−j0.0314 and a relative permeability µr = 1.548−j0.0907. Finally, the maximum obtained voltage from the proposed antenna is found about 2 V at 2.45 GHz and 2.5 V at 5.8 GHz, where, the corresponding measured equivalent isotropic radiated power is about 2.35 W at 2.45 GHz and 6.12 W at 5.8 GHz.
The design and implementation of an active router architecture that enables flexible network programmability based on so-called "user components" will be presents. This active router is designed to provide maximum flexibility for the development of future network functionality and services. The designed router concentrated mainly on the use of Windows Operating System, enhancing the Active Network Encapsulating Protocol (ANEP). Enhancing ANEP gains a service composition scheme which enables flexible programmability through integration of user components into the router's data path. Also an extended program that creates and then injects data packets into the network stack of the testing machine will be proposed, we will call this program
... Show MoreThe aim of this study is to develop a novel framework for managing risks in smart supply chains by enhancing business continuity and resilience against potential disruptions. This research addresses the growing uncertainty in supply chain environments, driven by both natural phenomena-such as pandemics and earthquakes—and human-induced events, including wars, political upheavals, and societal transformations. Recognizing that traditional risk management approaches are insufficient in such dynamic contexts, the study proposes an adaptive framework that integrates proactive and remedial measures for effective risk mitigation. A fuzzy risk matrix is employed to assess and analyze uncertainties, facilitating the identification of disr
... Show MoreThe introduction of Industry 4.0, to improve Internet of Things (IoT) standards, has sparked the creation of 5G, or highly sophisticated wireless networks. There are several barriers standing in the way of 5G green communication systems satisfying the expectations for faster networks, more user capacity, lower resource consumption, and cost‐effectiveness. 5G standards implementation would speed up data transmission and increase the reliability of connected devices for Industry 4.0 applications. The demand for intelligent healthcare systems has increased globally as a result of the introduction of the novel COVID‐19. Designing 5G communication systems presents research problems such as optimizing
The UN organization is considered one of the most important organizations at the international level. It has accomplished multiple tasks and roles of many different issues and events that hit the developing and advanced world countries. It has performed a series of procedures and laws that have had an impact on ending the wars and conflicts that plagued some countries and continued for a period of time in the past. Moreover, it has improved the level of the international relations between a number of countries due to the problems and incidents took place between them. It has relied on finding solutions and treatments for humanitarian problems such as the preservation of the environment, preventing the spread of epidemics and diseases Thi
... Show MoreCharge transfer in styryl dyes STQ-1, STQ-2,and STQ-3 with organic media system has been studied theoretically depending on the Franck- Condon rule and continuum dielectric model . The reorientation energies (eV) were evaluated theoretically depending on dipole momentum, dielectric constant , and refrective index n. The rate constant of charge transfer has been calculated depending on the reorientation energy (eV) ,effective free energy , potential height barrier , and coupling coefficient . A matlap program has been written to calculated the rate constant of charge transfer and other parameter. The results of calculations show that STQ-2 dye is more reaction for charge transfer compare with STQ-1 and STQ-3 dyes
Organic soil is problematic soils in geotechnical engineering due to its properties, as it is characterized by high compressibility and low bearing capacity. Therefore, several geotechnical techniques tried to stabilize and improve this soil type. In this study, sodium silicate was used to stabilize sand dune columns. The best sodium silicate concentration (9%) was used, and the stabilized sand dune columns were cured for seven days. The results for this soil were extracted using a numerical analysis program (Plaxis 3D, 2020).In the case of studying the effect of (L/D) (where ‘’L” and ‘’D’’ length and diameter of sand dune columns) of a single column of sand dunes stabilized with sodium silicate with a diff
... Show MoreThe annual performance of a hybrid system of a flat plate photovoltaic thermal system and a solar thermal collector (PVT/ST) is numerically analyzed from the energy, exergy, and environmental (CO2 reduction) viewpoints. This system can produce electricity and thermal power simultaneously, with higher thermal power and exergy compared to conventional photovoltaic thermal systems. For this purpose, a 3D transient numerical model is developed for investigating the system's performance in four main steps: (1) investigating the effects of the mass flow rate of the working fluid (20 to 50 kg/h) on the temperature behavior and thermodynamic performance of the system, (2) studying the impacts of using glass covers on the different parts of the s
... Show More