The purpose of this work is to study the classification and construction of (k,3)-arcs in the projective plane PG(2,7). We found that there are two (5,3)-arcs, four (6,3)-arcs, six (7,3)arcs, six (8,3)-arcs, seven (9,3)-arcs, six (10,3)-arcs and six (11,3)-arcs. All of these arcs are incomplete. The number of distinct (12,3)-arcs are six, two of them are complete. There are four distinct (13,3)-arcs, two of them are complete and one (14,3)-arc which is incomplete. There exists one complete (15,3)-arc.
A (b,t)-blocking set B in PG(2,q) is set of b points such that every line of PG(2,q) intersects B in at least t points and there is a line intersecting B in exactly t points. In this paper we construct a minimal (b,t)-blocking sets, t = 1,2,3,4,5 in PG(2,5) by using conics to obtain complete arcs and projective codes related with them.
Plane cubics curves may be classified up to isomorphism or projective equivalence. In this paper, the inequivalent elliptic cubic curves which are non-singular plane cubic curves have been classified projectively over the finite field of order nineteen, and determined if they are complete or incomplete as arcs of degree three. Also, the maximum size of a complete elliptic curve that can be constructed from each incomplete elliptic curve are given.
This paper presents a point multiplication processor over the binary field GF (2233) with internal registers integrated within the point-addition architecture to enhance the Performance Index (PI) of scalar multiplication. The proposed design uses one of two types of finite field multipliers, either the Montgomery multiplier or the interleaved multiplier supported by the additional layer of internal registers. Lopez Dahab coordinates are used for the computation of point multiplication on Koblitz Curve (K-233bit). In contrast, the metric used for comparison of the implementations of the design on different types of FPGA platforms is the Performance Index.
The first approach attains a performance index
... Show MoreIn this work, new kinds of blocking sets in a projective plane over Galois field PG(2,q) can be obtained. These kinds are called the complete blocking set and maximum blocking set. Some results can be obtained about them.
In this paper, the packing problem for complete ( 4)-arcs in is partially solved. The minimum and the maximum sizes of complete ( 4)-arcs in are obtained. The idea that has been used to do this classification is based on using the algorithm introduced in Section 3 in this paper. Also, this paper establishes the connection between the projective geometry in terms of a complete ( , 4)-arc in and the algebraic characteristics of a plane quartic curve over the field represented by the number of its rational points and inflexion points. In addition, some sizes of complete ( 6)-arcs in the projective plane of order thirteen are established, namely for = 53, 54, 55, 56.
The widespread use of the Internet of things (IoT) in different aspects of an individual’s life like banking, wireless intelligent devices and smartphones has led to new security and performance challenges under restricted resources. The Elliptic Curve Digital Signature Algorithm (ECDSA) is the most suitable choice for the environments due to the smaller size of the encryption key and changeable security related parameters. However, major performance metrics such as area, power, latency and throughput are still customisable and based on the design requirements of the device.
The present paper puts forward an enhancement for the throughput performance metric by p
... Show MoreN-Benzylidene m-nitrobenzeneamines (Schiff bases) were prepared by condensation of m-nitroaniline with aromatic aldehydes. These Schiff bases were found to react with maleic anhydride to give 2-Aryl-3-(m-nitrophenyl)-2, 3-dihydro [1, 3] oxazepine–4, 7–diones and with phthalic anhydride to give 2-Aryl-3–(m-nitrophenyl)–2, 3–dihydrobenz|| 1, 2-e|||| 1, 3] oxazepine–4, 7-diones which were reacted with pyrrolidine to give the anilide–pyrrolidides of maleic acid and phthalic acid.
Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.